【论文解读】Diff-IF: Multi-modality image fusion via diffusion model with fusion knowledge prior

基于扩散模型在多模态图像融合领域有待探索,本文主要解读了Diff-IF: Multi-modality image fusion via diffusion model with fusion knowledge prior,Information Fusion 2024的文章,以供大家参考。

论文: https://www.sciencedirect.com/science/article/pii/S1566253524002288
代码: https://github.com/XunpengYi/Diff-IF


图像融合中的生成式模型

基于生成对抗网络(GAN)的图像融合

基于GAN的融合网络主要包括一个生成器,通过合并来自不同领域的信息来生成融合图像,以及一个鉴别器负责对生成图像和源图像之间概率分布进行相似性评估。虽然基于GAN的图像融合模型产生了令人满意的融合图像,但它们受到不稳定训练过程和模式崩溃等问题的困扰。这些挑战导致了分布不合理、质量较低的融合图像的产生,显著影响了基于GAN的方法的实用性。

基于扩散模型(Diffusion Model)的图像融合及面临的挑战

文章指出,尽管扩散模型在图像生成任务取得了巨大的成功,扩散模型在多模态图像融合的核心挑战是缺乏Ground Truth,这使得扩散模型的基线没有办法直接用于多模态图像融合任务(如图1所示)。扩散模型在图像融合中的实现如图2(a)所示,目前可行的范例是利用一个无条件的预训练扩散模型和基于分数的方法。
(1)这种方法依赖于预训练的扩散模型提供的先验,这意味着这种基于扩散的方法在图像融合任务中不需要训练。它通过后设计的分数匹配优化过程实现图像融合,但设计繁琐,不针对任务。
(2)图像生成预训练的扩散参数可能是不合适的和不适用的,并不适用于图像融合。
(3)应用预训练后的网络也会导致修改网络结构的困难,进一步限制了该方法的应用范围。

在这种情况下,本文提出了另一个范例:训练基于扩散的图像融合模型,根据任务的要求和特征进行定制,使扩散过程更加紧凑和特定于任务。
具体来说:提出了一种新的具有融合知识先验的多模态融合扩散模型,称为Diff-IF。考虑到多模态图像融合中GT的缺失,Diff-IF将图像融合扩散模型设计为具有融合知识先验的条件扩散模型。它利用目标搜索技术,根据特定的图像融合任务提供具有最优先验分布的扩散模型。此外,Diff-IF同时包含了正向和反向扩散过程。首先,由于在前向扩散过程中融合图像的分布是未知的,因此创新性地提出了利用融合知识先验以代表融合图像的分布。其次,设计反向扩散去噪过程,生成符合融合知识先验概率分布的高质量融合图像。值得注意的是,这种可训练的DDPM过程可以通过根据融合任务的要求进行定制化的训练来实现,而不需要进行繁琐的设计。因此,Diff-IF在各种融合任务中提供了高质量的融合结果,同时与基于GAN的方法相比,也拥有更稳定的训练过程。

图1 本论文的motivation

在这里插入图片描述

图2 扩散模型在图像融合领域的应用范例

方法

融合知识先验和最优先验搜索

针对缺乏Ground Truth的问题,作者提出了Fusion Knowledge Prior和Targeted Search的方法,具体的说就是通过现有的融合方法获取一个先验的融合知识分布,随后通过指标/人工为导向的方法优选出自定义的融合分布。
在这里插入图片描述

图3 融合知识分布

扩散模型

得到自定义的融合分布后,作者通过Diffusion Model直接学习生成这一融合分布。具体来说设计了DDM和MDRM的两个模块,这一过程类似于知识蒸馏。
在这里插入图片描述

图4 扩散模型

因此,Diff-IF的训练策略和采样策略可以被总结为:

在这里插入图片描述

图5 Diff-IF的训练策略和采样策略

总结

这篇论文指出了现有扩散模型在多模态图像融合中的限制,提出了一个可行的用扩散模型训练的范式。针对多模态图像融合的扩散模型的应用可以围绕这一问题具体的展开,如何用扩散模型更好的进行融合还是值得进一步探究的。

### 关于Diff-IF的复现 对于Diff-IFDifferential Image Features)的复现,通常涉及图像处理中的微分操作以提取边缘和其他显著特征。然而,在提供的参考资料中并未直接提及Diff-IF的具体实现细节[^1]。 在实践中,Diff-IF可以通过多种方式实现,具体取决于应用场景的需求。一种常见的做法是在Python环境中利用NumPy和SciPy库来进行数值计算与信号处理: ```python import numpy as np from scipy import ndimage def compute_diff_if(image, sigma=1.0): """ 计算给定灰度图像的差分图像特征(Diff-IF) 参数: image (ndarray): 输入的二维灰度图像数组. sigma (float): 高斯滤波的标准偏差. 返回: tuple: 包含两个方向上的梯度幅值组成的元组. """ # 应用高斯平滑减少噪声影响 smoothed_image = ndimage.gaussian_filter(image, sigma=sigma) # 使用Sobel算子分别沿X轴Y轴求导数 sobel_x = ndimage.sobel(smoothed_image, axis=0) sobel_y = ndimage.sobel(smoothed_image, axis=1) return abs(sobel_x), abs(sobel_y) if __name__ == "__main__": from skimage.data import camera img = camera() # 加载测试图片 dx, dy = compute_diff_if(img) print("完成Diff-IF计算.") ``` 此代码片段展示了如何基于经典的Sobel算子来估算输入图像水平和垂直方向的一阶偏导数,从而获得差异化的图像特性表示形式。这种方法能够有效地捕捉到物体边界处像素强度变化的信息[^2]。 尽管上述例子提供了基本框架,但对于特定任务而言可能还需要调整参数设置或者引入其他预/后处理步骤才能取得最佳效果。此外,如果目标是模拟某些研究论文里的实验,则应当仔细参照原文献所提供的算法描述和技术规格进行精确重现[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值