《Learning OpenCV3》——第三章 OpenCV3 数据类型

第三章 OpenCV3 数据类型

OpenCV3的数据类型比较多,主要分为:

  • 基本数据类型(basic data types): 包括c++对应的基础类,如int、float等;简单的容器、数组和矩阵类;简单的例如点、矩形、尺寸等的几何概念类。
  • 帮助类(helper objects): 这一类表示一些抽象的概念。例如碎片处理的点类、切片使用的范围类、终止条件类等。
  • 大型数组类(large array types): 这一类通常包含很多其他类型,最具代表性的是 cv::Mat 类。

OpenCV3除了这些类型还极度使用c++的STL,其中vector类和模板的使用尤多。本章介绍前两种类型,大型数组类留到下一章介绍。

一:基本数据类型

1.1 cv::Vec<>

为什么不使用c++ STL固定的vector呢?因为OpenCV3将vector的使用细化了,cv::Vec<> 针对的是比较小的数据使用,即维数比较小,且在编译时就可以确定大小。而对于大的数据,OpenCV3则使用cv::Mat来处理。
cv::Vec<>的组织类型可以为:cv::Vec{2,3,4,6}{b,w,s,i,f,d} ,例如cv::Vec2i、cv::Vec4d等。

操作示例
默认构造函数Vec2s v2s; Vec6f v6f; // etc…
拷贝构造函数Vec3f u3f( v3f );
值构造函数Vec2f v2f(x0,x1); Vec6d v6d(x0,x1,x2,x3,x4,x5);
成员访问v4f[ i ]; v3w( j ); // (operator() and operator[] both work)
向量叉积v3f.cross( u3f );

1.2 cv::Matx<>

同样,cv::Matx<>针对的时比较小的矩阵。计算机视觉中有很多2x2、3x3和4x4的矩阵,cv::Matx<>就负责存储这些类型。cv::Vec<>继承了cv::Matx<>。
cv::Matx<>的组织类型可以为:cv::Matx{1,2,3,4,6}{1,2,3,4,6}{f,d} ,例如cv::Matx22i等。

操作示例
默认构造函数cv::Matx33f m33f; cv::Matx43d m43d;
拷贝构造函数cv::Matx22d m22d( n22d );
值构造函数cv::Matx21f m(x0,x1); cv::Matx44d m(x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15);
同元素矩阵m33f = cv::Matx33f::all( x );
零矩阵m23d = cv::Matx23d::zeros();
壹矩阵m16f = cv::Matx16f::ones();
单位矩阵m33f = cv::Matx33f::eye();
保存对角矩阵m31f = cv::Matx33f::diag(); // Create a matrix of size 3-by-1 of floats
均匀分布矩阵m33f = cv::Matx33f::randu( min, max );
正态分布矩阵m33f = cv::Matx33f::nrandn( mean, variance );
成员访问m( i, j ), m( i ); // one argument for one-dimensional matrices only
矩阵代数m1 = m0; m0 * m1; m0 + m1; m0 – m1;
单代数m * a; a * m; m / a;
比较m1 == m2; m1 != m2;
点乘m1.dot( m2 ); // (sum of element-wise multiplications, precision of m)
叉乘m1.ddot( m2 ); // (sum of element-wise multiplications,double precision)
重塑一个矩阵m91f = m33f.reshape<9,1>();
转换操作m44f = (Matx44f) m44d
从(i,j)处提取一个2x2矩阵m44f.get_minor<2, 2>( i, j );
提取i行m14f = m44f.row( i );
提取j列m41f = m44f.col( j );
提取对角m41f = m44f.diag();
计算转置n44f = m44f.t();
逆矩阵n44f = m44f.inv( method ); // (default method is cv::DECOMP_LU)
解决线性系统m31f = m33f.solve( rhs31f, method );
m32f = m33f.solve<2>( rhs32f, method ); // (template forma);
// default method is DECOMP_LU)
对应元素相乘m1.mul( m2 );

1.3 cv::Point<>

cv::Point<>和cv::Vec<>类型很相似,它们的不同在于:Point类型由命名的变量关联(mypoint.x,mypoint.y等),而vector类型则由下标访问(myvec[1]等)。
cv::Point<>的组织类型可以为:cv::Point{2,3}{i,f,d} ,例如cv::Point2i、cv::Point3f等。

操作示例
默认构造函数cv::Point2i p; cv::Point3f p;
拷贝构造函数cv::Point3f p2( p1 );
值构造函数cv::Point2i p( x0, x1 ); cv::Point3d p( x0, x1, x2 );
转化为vector(cv::Vec3f) p;
成员访问p.x; p.y; p.z;
点积(·)float x = p1.dot( p2 ); double x = p1.ddot( p2 )
叉积(x)p1.cross( p2 ); // 仅三维
点p在矩形r中的访问p.inside( r ); // 仅二维

1.4 cv::Scalar<>

cv::Scalar用于表示四维的点,它继承自相应的cv::Vec

1.5 cv::Size<>

cv::Size<>和cv::Point<>很相似,但它一般用于表示尺寸,因此相关的命名变量为 widthheight ,而不是 xy
cv::Size<>组织类型可以为:cv::cvSize、cv::Size2i和cv::Size2f

操作示例
默认构造函数cv::Size sz; cv::Size2i sz; cv::Size2f sz;
拷贝构造函数cv::Size sz2( sz1 );
值构造函数cv::Size2f sz( w, h );
成员访问sz.width; sz.height;
计算面积sz.area();

1.6 cv::Rect

cv::Rect 既包含x和y分量(左上角点),又包含width和height分量(大小)。

操作示例
默认构造函数cv::Rect r;
拷贝构造函数cv::Rect r2( r1 );
值构造函数cv::Rect( x, y, w, h );
从Point和Size构造cv::Rect( p, sz );
从一对Point构造cv::Rect( p1, p2 );
成员访问r.x; r.y; r.width; r.height;
计算面积r.area();
提取左上角r.tl();
提取右下角r.br();
判断点p是否在矩形内r.contains( p );

cv::Rect也支持很多操作符重载操作:

操作示例
矩形r1、r2相交cv::Rect r3 = r1 & r2; r1 &= r2;
包含r1、r2的最小矩形cv::Rect r3 = r1 | r2; r1 |= r2;
矩形r增加xcv::Rect rx = r + x; r += x;
矩形r扩大scv::Rect rs = r + s; r += s;
判断r1、r2相等bool eq = (r1 == r2);
判断r1、r2不等bool ne = (r1 != r2);

1.7 cv::RotatedRect

cv::RotatedRect是OpenCV3中少数的不基于模板的类,表示旋转一定角度的矩形。cv::RotatedRect与它中心的位置相关,而cv::Rect与它左上角位置相关。cv::RotatedRect包括:

  • 中心:一个cv::Point2f类型;
  • 尺寸:一个cv::Size2f 类型;
  • 角度:一个float 类型。
操作示例
默认构造函数cv::RotatedRect rr();
拷贝构造函数cv::RotatedRect rr2( rr1 );
从两个角点构造cv::RotatedRect( p1, p2 );
值构造;包含一个点,一个尺寸,一个角度cv::RotatedRect rr( p, sz, theta ) ;
成员访问rr.center; rr.size; rr.angle;
返回四角rr.points( pts[4] );

1.8 cv::Complex

OpenCV的复数类型和c++ STL的复数类型主要区别是成员访问不同。STL复数的实部和虚部通过real()和imag()访问,而OpenCV的复数实部和虚部成员变量为public,因此可以通过”.”或“->”操作直接访问。

操作示例
默认构造函数cv::Complexf z1; cv::Complexd z2;
拷贝构造函数cv::Complexf z2( z1 ); cv::Complexf u2f( v2f );
值构造函数cv::Complexd z1(re0); cv::Complexd(re0,im1) ;
成员访问z1.re; z1.im;
复数共轭z2 = z1.conj();

二:帮助类

2.1 cv::TermCriteria class

很多算法都有一些终止条件,比如何时结束或者接近什么情况时结束。cv::TermCriteria标识了这些结束条件,并且很容易传递给OpenCV3的算法。它包含三个成员变量:type、maxCount和epsilon
type可以被设置为:

  • cv::TermCriteria::COUNT——在maxCount迭代后结束;
  • cv::TermCriteria::EPS——在收敛速度低于ε时候结束;
  • cv::TermCriteria::COUNT | cv::TermCriteria::EPS——在两种条件下结束。

2.2 cv::Range class

cv::Range类被用来指定一段连续的整数值,它包含 start和end 成员变量。通常情况下cv::Range包含start值但不包含end值,例如:cv::Range rng(0,4)包含0,1,2,3但不包含4。
使用 size() 成员函数可以获得range包含的数目,例如上例rng.size() 为4;使用 empty() 可以判断range是否为空;all() 包含Range的所有范围。

2.3 cv::Ptr 模板和垃圾回收

c++中的智能指针采用引用计数的方式来标识指针的被引用次数,当引用增加时计数会加1,引用减小时计数会减1;当引用计数为0即指针不再需要时,就会被销毁。OpenCV3中的cv::Ptr<>与c++智能指针的作用相同。
使用时需要让Ptr包裹想要创建的指针类型,例如:

cv::Ptr<Matx33f> p(new cv::Matx33f);
cv::Ptr<Matx33f> p = makePtr<cv::Matx33f>();

使用 addref()和release() 可以手动控制智能指针的引用计数,但通常情况下不建议使用。empty() 可以判断智能指针是否为空,例如智能指针包裹的指针被销毁了或者一开始包裹的指针就为NULL的情况。重写 delete_obj() 成员函数,可以在指针销毁的时候做一些需要的处理操作,这个将函数在销毁的时候调用。

使用智能指针好的习惯应该是:每次生成指针时都定义delete_obj()操作,来保证销毁时候所有资源被正确释放。

2.3 cv::Exception 类和异常处理

OpenCV3继承STL的 std::exception 异常定义了自己的 cv::Exception 异常类。cv::Exception 包含以下几个变量: code, err, func, file和line ,通过这几个变量可以很快定位和查询异常信息。
使用以下方式可以定义自己的异常:

CV_Error( errorcode, description );
CV_Error_( errorcode, printf_fmt_str, [printf-args] );
CV_Assert( condition );    // Condition test
CV_DbgAssert( condition );    // Condition test

2.4 cv::DataType<>

cv::DataType<>用于给基础类型提供说明描述,在c++中这种技术称为类特性。简言之,也就是记录某种数据类型深度多少,有几个通道,格式是什么等。定义如下:

template<typename _Tp> class DataType
{
    typedef _Tp value_type;
    typedef value_type work_type;
    typedef value_type channel_type;
    typedef value_type vec_type;
    enum {
        generic_type = 1,
        depth = -1,
        channels = 1,
        fmt = 0,
        type = CV_MAKETYPE(depth, channels)
    };
};

为了更好地理解,我们来看来自core.hpp的两个示例:

// Defination for float
template<> class DataType<float>
{
public:
    typedef float value_type;
    typedef value_type work_type;
    typedef value_type channel_type;
    typedef value_type vec_type;
    enum {
        generic_type = 0,
        depth = DataDepth<channel_type>::value,
        channels = 1,
        fmt = DataDepth<channel_type>::fmt,
        type = CV_MAKETYPE(depth, channels)
    };
};

其中,value_type是float类型,work_type, channel_type和vec_type同样也是float类型;generic_type设置为0,且在core.hpp中的所有类型都被设置为0; depth由cv::DataDepth::value 定义,它的值为CV_32F;channels为1,因为float为单独的一个数;fmt 由cv::DataDepth::fmt 定义,它的值为f;type由CV_MAKETYPE(CV_32F,1) 确定为CV_32FC1 。这样,对于float类型,DataType可以为它提供很好的解释。
下一个例子:

// Defination for cv::Rect<>
template<typename _Tp> class DataType<Rect_<_Tp> >
{
public:
    typedef Rect_<_Tp> value_type;
    typedef Rect_<typename DataType<_Tp>::work_type> work_type;
    typedef _Tp channel_type;
    typedef Vec<channel_type, channels> vec_type;
    enum {
        generic_type = 0,
        depth = DataDepth<channel_type>::value,
        channels = 4,
        fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
        type = CV_MAKETYPE(depth, channels)
    };
};

2.5 cv::InputArray和cv::OutputArray

cv::InputArray和cv::OutputArray代指所有的数组类型,使用它们可以简化输入输出而不需要关心具体的类型,更像是一种数组容器。cv::InputArray默认是const的,即只读的;而cv::OutputArray则无此限制。当无需输入或输出时,可以使用 cv::noArray()

三:其他实用功能

OpenCV3也提供了一些经常用于计算机视觉的实用功能,列举如下,具体的信息可参照相关文档:

功能描述
cv::alignPtr()Align pointer to given number of bytes
cv::alignSize()Align buffer size to given number of bytes
cv::allocate()Allocate a C-style array of objects
cvCeil()Round float number x to nearest integer not smaller than x
cv::cubeRoot()Compute the cube root of a number
cv::CV_Assert()Throw an exception if a given condition is not true
CV_Error()Macro to build a cv::Exception (from a fixed string) and throw it
CV_Error_()Macro to build a cv::Exception (from a formatted string) and throw it
cv::deallocate()Deallocate a C-style array of objects
cv::error()Indicate an error and throw an exception
cv::fastAtan2()Calculate two-dimensional angle of a vector in degrees
cv::fastFree()Deallocate a memory buffer
cv::fastMalloc()Allocate an aligned memory buffer
cvFloor()Round float number x to nearest integer not larger than x
cv::format()Create an STL string using sprintf-like formatting
cv::getCPUTickCount()Get tick count from internal CPU timer
cv::getNumThreads()Count number of threads currently used by OpenCV
cv::getOptimalDFTSize()Compute the best size for an array that you plan to pass to cv::DFT()
cv::getThreadNum()Get index of the current thread
cv::getTickCount()Get tick count from system
cv::getTickFrequency()Get number or ticks per second (see cv::getTickCount())
cvIsInf()Check if a floating-point number x is infinity
cvIsNaN()Check if a floating-point number x is “Not a Number”
cvRound()Round float number x to the nearest integer
cv::setNumThreads()Set number of threads used by OpenCV
cv::setUseOptimized()Enables or disables the use of optimized code (SSE2, etc.)
cv::useOptimized()Indicates status of optimized code enabling (see cv::setUseOptimized())
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页