Anaconda Prompt使用简介:安装python等包、创建删除环境等

本文详细介绍了如何使用conda管理虚拟环境,包括创建、激活、删除和退出环境,以及设置国内镜像加速下载。同时,讲解了安装PyTorch和TensorFlow的步骤,包括检查CUDA和CUDNN版本,选择合适的Python和框架版本,并提供了卸载和更换版本的方法。此外,还提到了TensorFlow的CPU版本安装流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.创建、激活、删除、退出虚拟环境

conda --version    #检查Anaconda是否安装成功
conda info --envs    #检查目前安装了哪些环境
conda search --full-name python    #检查目前有哪些版本的python可以安装
conda search --full-name tensorflow    #检查目前有哪些tensorflow版本可以安装


//创建环境:
conda create --name env_name python=3.5    #env_name-环境名字

//激活虚拟环境 conda可省略
conda activate env_name    #--windows

//环境复制命令:
conda create -n traget_env_name --clone source_env_name

//退出虚拟环境
conda deactivate
//也可使用"activate root"切回rooth环境

// 删除虚拟环境
conda remove --name env_name --all
//卸载包
进入环境,执行:
pip uninstall tensorflow

//conda常用命令:
1.conda list:查看安装了哪些包
2.conda install package_name:安装包
3.conda env list 或 conda info -e:查看当前存在哪些虚拟环境
4.conda update conda:检查更新当前conda

//第三方包的安装
anaconda search -t conda PACKAGE  #查看哪些可下载的版本
anaconda show USER/PACKAGE   #选择合适的版本并复制,然后获取其安装命令

//外网下载太慢,可设置国内镜像(如清华源)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/    #推荐
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
+
conda config --set show_channel_urls yes    #设置搜索时显示通道地址
注:通常加速时用以上两个命令就可

conda config --show channels    #查看频道
conda config --remove-key channels    #恢复默认源

2.快速安装pytoch

#查看cudnn 版本
nvcc -V
#查看cuda 版本
set cuda

在这里插入图片描述
2.安装anaconda
官网下载安装:https://www.anaconda.com/products/distribution/start-coding-immediately

#新建环境
conda create -name pytorch38 python=3.8

#安装pytorch
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116

conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.6 -c pytorch -c nvidia


# 安装 torch 1.8.2+cu11.1
pip install torch==1.8.2 torchvision==0.9.2 torchaudio===0.8.2 --extra-index-url https://download.pytorch.org/whl/lts/1.8/cu111

#其他版本:torch+cuda10.2
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

# 修改requirements.txt,将其中的torch和torchvision注释掉
pip install -r requirements.txt

#如果想要换源安装
pip install matplotlib -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

阿里云             http://mirrors.aliyun.com/pypi/simple/ 
中国科技大学       https://pypi.mirrors.ustc.edu.cn/simple/ 
豆瓣(douban)      http://pypi.douban.com/simple/
清华大学          https://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学   http://pypi.mirrors.ustc.edu.cn/simple/

在这里插入图片描述
在这里插入图片描述

3.Tensorflow+win64+cpu安装

1.查看可安装python版本:conda search --name python  #我选的3.6
2.创建环境:conda create --name tensorflow python=3.6
3.激活环境:activate tensorflow
4.查看可安装的tf包:conda search --name tensorflow    #w我选1.1.0
5.安装tensorflow: conda install tensorflow=1.1.0

根据以上步骤最终可验证模块导入结果:
在这里插入图片描述

//将1.1.0卸载,装2.0.0
注:在tensorflow环境中操作
1.卸载已安装版本:pip uninstall tensorflow
2.查看所有可安装:conda search --name tensorflow
3.安装:conda install tensorflow=2.0

验证:在这里插入图片描述

### 如何创建和管理 Anaconda 虚拟环境 #### 打开 Anaconda Prompt 为了启动命令界面,需通过开始菜单找到Anaconda3(64-bit),随后进入所有应用程序列表中的Anaconda Prompt来开启终端窗口[^2]。 #### 创建虚拟环境Anaconda Prompt 中输入如下指令以创建新的虚拟环境: ```bash conda create -n 虚拟环境名字 python=3.6 ``` 这条语句会基于 Python 3.6 版本建立名为 `虚拟环境名字` 的新环境。当然,可替换 `虚拟环境名字` 和指定不同的 Python 版本来适应具体需求[^1]。 #### 激活与停用虚拟环境 一旦创建完成,可通过下面两条命令分别激活或退出该自定义环境: - **激活**:`conda activate 虚拟环境名字` - **停用**:`conda deactivate` 这使用户能够在不同环境下轻松切换工作状态,确保各个项目的独立性和稳定性[^4]。 #### 安装额外软件 当处于某个特定的虚拟环境中时,可以通过 pip 或者 conda 来安装所需的第三方库文件。例如,如果想要在这个新建的环境中加入 NumPy 库,则只需执行以下操作之一即可: - 使用 Conda 安装:`conda install numpy` - 使用 Pip 安装:`pip install numpy` 值得注意的是,在大多数情况下推荐优先考虑使用 conda 进行安装,因为这样可以获得更好的兼容性支持以及更稳定的性能表现[^3]。 #### 升级 Python 解释器版本 对于已经存在的虚拟环境而言,有时可能需要更新其内部使用Python 解释器至最新稳定版或其他所需的具体版本号。此时应该先确认当前可用的 Python 发布版本清单,再决定具体的升级目标;之后便能够利用类似于这样的命令来进行相应调整: ```bash conda update python # 更新到最新的次要版本 conda install python=x.y.z # 将 Python 设置为 x.y.z 版本 ``` 这里假设 x.y.z 表示期望达到的确切 Python 主次版本组合形式。 #### 删除不再需要的虚拟环境 最后,如果有任何不再使用的旧有虚拟环境占用着磁盘空间资源的话,那么就可以借助于如下的简单命令将其彻底移除掉: ```bash conda env remove --name 虚拟环境名字 ``` 此过程将会连同关联的数据一起清除干净,从而释放出宝贵的存储容量给其他更重要的用途所用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月醉窗台

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值