1、dify 简介
Dify 是一个面向生成式AI应用开发的开源平台,致力于降低大语言模型技术的使用门槛。该平台创新性地结合了云原生架构与AI工程化实践,为开发者提供从模型接入到应用部署的一站式解决方案。
作为新一代LLM开发工具,Dify 的独特价值在于:
- 技术整合:平台预置了多模态模型支持体系、可视化Prompt设计器、智能检索增强生成系统等核心组件
- 全栈能力:同时提供面向开发者的SDK和管理控制台,支持从原型设计到规模化运营的全生命周期管理
- 协作特性:通过直观的交互界面,让业务专家也能参与AI能力调优和数据治理
2、为什么用dify
你可以把 LangChain 这类开发库比作散装的五金工具——虽然灵活,但需要开发者自行组装。而 Dify 更像一个预制的智能建造系统,不仅提供标准化构件,还包含经过验证的施工方案。
作为开源领域的工程化实践者,Dify 展现出三大差异化优势:
- 生产就绪性:预置企业级功能如多租户隔离、审计日志、性能监控等开箱即用
- 架构完整性:从模型网关、业务逻辑层到用户界面形成闭环系统
- 可控性保障:支持私有化部署的同时,保持与最新AI技术的同步演进
3、从创建应用开始
Dify 平台提供四种不同层级的 AI 应用构建模式,满足从入门到高阶的开发需求:
- 对话助手(Chatbot) 入门级解决方案,让开发者快速搭建智能对话系统。通过可视化界面配置对话逻辑和知识库,无需编码即可创建具备基础问答能力的 AI 助手,是探索大语言模型应用的理想起点。
- 智能代理(Agent) 进阶型应用框架,赋予 AI 自主决策与执行能力。系统可基于用户意图进行动态推理,智能调用 API 工具链完成复杂操作,如实时数据查询、事务处理等,实现从"回答问题"到"解决问题"的跨越。
- 对话流程(Chatflow) 支持上下文记忆的多轮交互系统。通过状态机机制管理对话进程,可处理包含分支逻辑的深度会话场景,适用于客户服务、教育辅导等需要持续跟踪对话上下文的专业场景。
- 自动化工作流(Workflow) 面向单次任务的高效处理引擎。采用节点式编排设计,支持将大语言模型能力与传统系统服务无缝衔接,可快速构建数据提取、内容生成等批处理任务,显著提升业务自动化水平。
每种模式都提供从开发调试到生产部署的全套工具链,开发者可根据业务复杂度自由选择,并支持在项目演进过程中平滑升级应用架构。平台特有的"渐进式复杂度"设计,既降低了入门门槛,又为专业开发保留了充分的扩展空间。
4、DSL文件
DSL 是由 Dify.AI 所定义的 AI 应用工程文件标准,文件格式为 YML。该标准涵盖应用在 Dify 内的基本描述、模型参数、编排配置等信息。
如果你从社区或其它人那里获得了一个应用模版(DSL 文件),可以从工作室选择 「 导入DSL 文件 」。DSL 文件导入后将直接加载原应用的所有配置信息。
5、工作流节点
节点是工作流的重要元素,通过串联不同功能的节点,可以实现工作流的各项操作。这种设计特别适合自动化和批量处理场景,如高品质翻译、数据分析、内容创作、电子邮件自动化等应用。然而,这类应用无法进行生成结果的多轮对话交互。
5.1、 起始节点
"起始"节点是所有工作流程应用(Chatflow / Workflow)的基础,提供了之后各个节点以及应用运行所需的初始信息,如用户输入的文本、上传的文件等。
5.2、大语言模型节点(LLM节点)
这个节点调用大语言模型(LLM),处理和分析用户在 “起始” 节点中输入的数据(包括自然语言、上传的文件或图片),并产生有意义的响应。
5.3、知识检索节点
此节点能从知识库中寻找与用户问题相关的内容,这些内容可以被下一步的 LLM 节点用作参考上下文。
5.4、问题分类节点
问题分类节点通过预设的分类规则,能够根据用户输入,利用 LLM 进行推理并匹配相应的类别,生成分类结果,为后续节点提供更精准的信息。
5.5、条件分支节点
该节点可以根据设定的 If/else/elif 条件将 Chatflow / Workflow 的流程切分为多个分支。
5.6、代码执行节点
代码节点支持 Python / NodeJS 代码的运行,用于在工作流程中进行数据转换。它可以简化你的工作流程,适合进行算术运算、JSON 变换、文本处理等操作。
5.7、模板转换节点
借助 Jinja2 这种强大的 Python 模板语言,模板节点可以在工作流中实现灵活且轻量的数据转换,适用于处理文本、转换JSON 等。例如,将前面步骤的变量进行格式化和合并,创造出单一的文本输出,非常适合将多个数据源的信息汇总成一个特定格式,以满足后续步骤的需求。
5.8、文档提取器节点
LLM 无法直接读取或理解文档内容,因此需要借助文档提取器节点来解析用户上传的文档,将文件中的信息转换为文本,再传给 LLM 进行处理。
5.9、列表操作节点
列表操作节点能够对文件的各种属性(如格式类型、文件名、大小等)进行筛选和提取,将不同格式的文件送到相应的处理节点,实现精准的文件流程控制。
5.10变量聚合节点
通过变量聚合,可以将问题分类或条件分支等的多路输出整合为单一输出,供下游节点使用和操作,极大地简化了数据流的管理。
5.12变量赋值节点
你可以利用变量赋值节点将对话上下文、上传的文件、用户输入的偏好信息等变量写入会话变量,供后续对话参考。
5.13迭代节点
迭代节点可以对数组中的每个元素执行相同的操作,并产生所有结果,可以视为批量任务处理器。通常,迭代节点会配合数组变量使用。
5.14参数提取节点
这个节点利用 LLM 从自然语言中推理和提取结构化参数,以供后续工具调用或 HTTP 请求使用。
5.15HTTP 请求节点
该节点允许通过 HTTP 协议向服务器发送请求,适用于获取外部数据、webhook、生成图片、下载文件等操作。你可以向指定的网络地址发送定制化的 HTTP 请求,实现与各种外部服务的互动。
5.16Agent 节点
Agent 节点在Dify Chatflow/Workflow 中负责自主调用工具的功能。它通过集成各种 Agent 推理策略,使LLM能够在运行时动态选择并执行工具,实现多步推理。
5.17工具节点
"工具"节点对工作流提供了强劲的外部功能支持,可分为三个类别:
-
预装工具,这些是由Dify直接提供的工具,在使用前可能要先进行授权。
-
自定义工具,这些工具可以通过 OpenAPI/Swagger 标准格式导入或设定。如预装工具无法满足你的需求,可在Dify界面导向 – 工具中构建自己的工具。
-
工作流程,你可以设计一个更加复杂的工作流,并发布为工具。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!