学习笔记 永磁同步电机数学基础

永磁同步电机的坐标系转换

  三项PMSM的三项电压相位依次滞后120°,呈正弦形式,可视为三个长度随时间变化,相位依次相差120°的矢量,其构成的电压矢量和可表示为实部+虚部的形式(Clark变换),也可以将旋转的电压矢量和表示为与转子具有固定相位差的形式(Park变换)。

Clark变换

  我们将 a b c abc abc三相构成的坐标系称为自然坐标系, a b c abc abc分别表示三相永磁同步电机各项的电压,其表达式为: u a = U m s i n ( ω t ) u b = U m s i n ( ω t − 2 π 3 ) u c = U m s i n ( ω t + 2 π 3 ) (1) \begin{align}u_a&=U_msin(\omega t) \\u_b &= U_msin(\omega t-\frac{2\pi}{3}) \\u_c &= U_msin(\omega t+\frac{2\pi}{3})\end{align}\tag{1} uaubuc=Umsin(ωt)=Umsin(ωt32π)=Umsin(ωt+32π)(1)  将向量的实虚部分别定义为 α − β \alpha-\beta αβ,定义 α − β \alpha-\beta αβ坐标系为静止坐标系,其坐标关系如图所示ABC_aplhabeta
根据投影关系,我们可以计算投影分量 [ u α u β ] = [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ u a u b u c ] (2) \begin{bmatrix}u_\alpha\\u_\beta\end{bmatrix}=\begin{bmatrix}1 & -\frac{1}{2}&-\frac{1}{2}\\ 0&\frac{\sqrt3}{2}&-\frac{\sqrt3}{2}\end{bmatrix}\begin{bmatrix}u_a\\u_b\\u_c\end{bmatrix}\tag{2} [uαuβ]=[102123 2123 ] uaubuc (2)根据投影分量我们可以计算和矢量 U o u t = ( u a − 1 2 u b − 1 2 u c ) + j ( 3 2 u b − 3 2 u c ) = 3 2 s i n ( ω t ) + j 3 2 c o s ( ω t ) = 3 2 U m e j ( ω t − π 2 ) (3) \begin{align}U_{out} &=(u_a-\frac{1}{2}u_b-\frac{1}{2}u_c)+j(\frac{\sqrt3}{2}u_b-\frac{\sqrt3}{2}u_c)\\&=\frac{3}{2}sin(\omega t)+j\frac{3}{2}cos(\omega t)\\&=\frac{3}{2}U_me^{j(\omega t-\frac{\pi}{2})}\end{align}\tag{3} Uout=(ua21ub21uc)+j(23 ub23 uc)=23sin(ωt)+j23cos(ωt)=23Umej(ωt2π)(3)可以看到电压和矢量的幅值扩大了 3 / 2 3/2 3/2倍,为了保证和矢量的幅值不变,需要将投影矩阵乘以系数 2 / 3 2/3 2/3,得到自然坐标系 a b c abc abc到静止坐标系 α − β \alpha-\beta αβ的变换矩阵,将其定义为clark变换 T a b c − α β = 2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] (4) T_{abc-\alpha\beta}=\frac{2}{3}\begin{bmatrix}1 & -\frac{1}{2}&-\frac{1}{2}\\ 0&\frac{\sqrt3}{2}&-\frac{\sqrt3}{2}\end{bmatrix}\tag{4} Tabcαβ=32[102123 2123 ](4)
同理可以得到静止坐标系 α − β 到 \alpha-\beta到 αβ自然坐标系 a b c abc abc的变换矩阵,将其定义为clark反变换 T α β − a b c = [ 1 0 − 1 2 3 2 − 1 2 − 3 2 ] (5) T_{\alpha\beta-abc} =\begin{bmatrix}1 & 0 \\ -\frac{1}{2} & \frac{\sqrt3}{2}\\-\frac{1}{2} & -\frac{\sqrt3}{2}\end{bmatrix}\tag{5} Tαβabc= 12121023 23 (5)

Park变换

  我们定义与电机转子方向相同的轴为直轴,也称为d轴;与转子方向正交的轴为交轴,也称为q轴, d − q d-q dq轴构成的坐标系称为同步旋转坐标系,其图示如下
在这里插入图片描述
根据坐标旋转的变换矩阵,可以得到静止坐标系 α − β \alpha-\beta αβ到同步旋转坐标系 d − q d-q dq的变换矩阵,将其定义为park变换 T α β − d q = [ c o s θ e s i n θ e − s i n θ e c o s θ e ] (6) T_{\alpha\beta-dq} = \begin{bmatrix}cos\theta_e&sin\theta_e\\-sin\theta_e&cos\theta_e\end{bmatrix}\tag{6} Tαβdq=[cosθesinθesinθecosθe](6)同理可以得到同步旋转坐标系 d − q d-q dq到静止坐标系 α − β \alpha-\beta αβ的变换矩阵,将其定义为park反变换 T d q − α β = [ c o s θ e − s i n θ e s i n θ e c o s θ e ] (7) T_{dq-\alpha\beta} = \begin{bmatrix}cos\theta_e&-sin\theta_e\\sin\theta_e&cos\theta_e\end{bmatrix}\tag{7} Tdqαβ=[cosθesinθesinθecosθe](7)
注:park变换中的 θ e \theta_e θe为电角度,编码器测量角度为机械角度 θ m \theta_m θm,其对应关系为 θ e = θ m P n \theta_e = \theta_mP_n θe=θmPn,其中 P n P_n Pn为PMSM的极对数

变换示例

  假设三项电压分别为 u a = 50 s i n ( 100 π t ) u b = 50 s i n ( 100 π − 2 π 3 ) u c = 50 s i n ( 100 π + 2 π 3 ) (8) \begin{align}u_a&=50sin(100\pi t) \\u_b &= 50sin(100\pi-\frac{2\pi}{3}) \\u_c &= 50sin(100\pi+\frac{2\pi}{3})\end{align}\tag{8} uaubuc=50sin(100πt)=50sin(100π32π)=50sin(100π+32π)(8)经过clark变换及park变换分别得到如下结果
请添加图片描述
可以看到, a b c abc abc自然坐标系中的三相电压经过clark变换到 α − β \alpha-\beta αβ静止坐标系后变为相位差相差90°的两路正弦形式, α − β \alpha-\beta αβ静止坐标系经过park变换到 d − q d-q dq同步旋转坐标系后变为与反电动势大小相同的直流形式。
  通过clark+park变换可以将非线性的三相电压 u a , u b , u c u_a,u_b,u_c ua,ub,uc转换为线性形式的 u d , u q u_d,u_q ud,uq,既可以简化自然坐标系下的三项PMSM数学模型,又为电流环的闭环控制奠定了基础。

永磁同步电机的电压方程

  在对永磁同步电机电压方程建模时,为了简化分析,假设三相PMSM为理想电机,且满足以下条件:

  • 忽略电机铁芯的饱和;
  • 不计电机中的涡流和磁滞损耗;
  • 电机中的电流为对称的三相正弦波电流。

自然坐标系下的电压方程

  根据以上假设和物理方程,可以得到自然坐标系下三相电压 u a , u b , u c u_a,u_b,u_c ua,ub,uc的状态方程 [ u a u b u c ] = [ R 0 0 0 R 0 0 0 R ] [ i a i b i c ] + d d t [ ψ a ψ b ψ c ] (9) \begin{bmatrix}u_a\\u_b\\u_c\end{bmatrix}=\begin{bmatrix}R&0&0\\0&R&0\\0&0&R\end{bmatrix}\begin{bmatrix}i_a\\i_b\\i_c\end{bmatrix}+\frac{d}{dt}\begin{bmatrix}\psi_a\\\psi_b\\\psi_c\end{bmatrix}\tag{9} uaubuc = R000R000R iaibic +dtd ψaψbψc (9)表示成向量形式为 u a b c = R i a b c + d d t ψ a b c (10) \boldsymbol{u_{abc}}=R\boldsymbol{i_{abc}}+\frac{d}{dt}\boldsymbol{\psi_{abc}}\tag{10} uabc=Riabc+dtdψabc(10)其中 R R R为三相绕组, i a , i b , i c i_a,i_b,i_c ia,ib,ic为三相电流, ψ a , ψ b , ψ c \psi_a,\psi_b,\psi_c ψa,ψb,ψc为磁链,其具体方程可以表示为 [ ψ a ψ b ψ c ] = [ L m 3 + L l 3 − 0.5 L m 3 − 0.5 L m 3 − 0.5 L m 3 L m 3 + L l 3 − 0.5 L m 3 − 0.5 L m 3 − 0.5 L m 3 L m 3 + L l 3 ] [ i a i b i c ] + ψ f [ c o s ( θ e ) c o s ( θ e − 2 π 3 ) c o s ( θ e + 2 π 3 ) ] (11) \begin{bmatrix}\psi_a\\\psi_b\\\psi_c\end{bmatrix}=\begin{bmatrix}L_{m3}+L_{l3}&-0.5L_{m3}&-0.5L_{m3}\\-0.5L_{m3}&L_{m3}+L_{l3}&-0.5L_{m3}\\-0.5L_{m3}&-0.5L_{m3}&L_{m3}+L_{l3}\end{bmatrix}\begin{bmatrix}i_a\\i_b\\i_c\end{bmatrix}+\psi_f\begin{bmatrix}cos(\theta_e)\\cos(\theta_e-\frac{2\pi}{3})\\cos(\theta_e+\frac{2\pi}{3})\end{bmatrix}\tag{11} ψaψbψc = Lm3+Ll30.5Lm30.5Lm30.5Lm3Lm3+Ll30.5Lm30.5Lm30.5Lm3Lm3+Ll3 iaibic +ψf cos(θe)cos(θe32π)cos(θe+32π) (11)其中 L m 3 L_{m3} Lm3为定子互感, L l 3 L_{l3} Ll3为定子漏感。根据机电能量转换原理,电磁转矩 T e T_e Te等于磁场储能对机械角 θ m \theta_m θm的偏导,因此有 T e = 1 2 p n ∂ ∂ θ m ( i a b c T ⋅ ψ a b c ) (12) T_e = \frac{1}{2}p_n\frac{\partial}{\partial\theta_m}(\boldsymbol{i_{abc}^T\cdot\psi_{abc}})\tag{12} Te=21pnθm(iabcTψabc)(12)

静止坐标系下的电压方程

  根据clark变换公式,可以得到如下变换关系:
{ f ( α , β ) = T a b c − α β f ( a , b , c ) f ( a , b , c ) = T α β − a b c f ( α , β ) (13) \left\{\begin{aligned} f(\alpha,\beta)=&T_{abc-\alpha\beta}f(a,b,c)\\ f(a,b,c)=&T_{\alpha\beta-abc}f(\alpha,\beta)\end{aligned}\right.\tag{13} {f(α,β)=f(a,b,c)=Tabcαβf(a,b,c)Tαβabcf(α,β)(13)
根据上述变换公式,将公式(10)转换到静止坐标系 α − β \alpha-\beta αβ下可以得到: T α β − a b c u α β = R T α β − a b c i α β + d d t T α β − a b c ψ α β = T α β − a b c R i α β + T α β − a b c d d t ψ α β (14) \begin{aligned}T_{\alpha\beta-abc}\boldsymbol{u_{\alpha\beta}}&=RT_{\alpha\beta-abc}\boldsymbol{i_{\alpha\beta}}+\frac{d}{dt}T_{\alpha\beta-abc}\boldsymbol{\psi_{\alpha\beta}}\\&=T_{\alpha\beta-abc}R\boldsymbol{i_{\alpha\beta}}+T_{\alpha\beta-abc}\frac{d}{dt}\boldsymbol{\psi_{\alpha\beta}}\end{aligned}\tag{14} Tαβabcuαβ=RTαβabciαβ+dtdTαβabcψαβ=TαβabcRiαβ+Tαβabcdtdψαβ(14)将等式两端同时乘以 T a b c − α β T_{abc-\alpha\beta} Tabcαβ,原方程变为: T a b c − α β T α β − a b c u α β = T a b c − α β T α β − a b c R i α β + T a b c − α β T α β − a b c d d t ψ α β (15) T_{abc-\alpha\beta}T_{\alpha\beta-abc}\boldsymbol{u_{\alpha\beta}}=T_{abc-\alpha\beta}T_{\alpha\beta-abc}R\boldsymbol{i_{\alpha\beta}}+T_{abc-\alpha\beta}T_{\alpha\beta-abc}\frac{d}{dt}\boldsymbol{\psi_{\alpha\beta}}\tag{15} TabcαβTαβabcuαβ=TabcαβTαβabcRiαβ+TabcαβTαβabcdtdψαβ(15)由于 T a b c − α β T α β − a b c = E T_{abc-\alpha\beta}T_{\alpha\beta-abc}=E TabcαβTαβabc=E,得到静止坐标系 α − β \alpha-\beta αβ下的电压方程: u α β = R i α β + d d t ψ α β (16) \boldsymbol{u_{\alpha\beta}}=R\boldsymbol{i_{\alpha\beta}}+\frac{d}{dt}\boldsymbol{\psi_{\alpha\beta}}\tag{16} uαβ=Riαβ+dtdψαβ(16)

同步旋转坐标系下的电压方程

  根据park变换公式,可以得到如下变换关系: { f ( d , q ) = T α β − d q f ( α , β ) f ( α , β ) = T d q − α β f ( d , q ) (17) \left\{\begin{aligned} f(d,q)=&T_{\alpha\beta-dq}f(\alpha,\beta)\\f(\alpha,\beta)=&T_{dq-\alpha\beta}f(d,q)\end{aligned}\right.\tag{17} {f(d,q)=f(α,β)=Tαβdqf(α,β)Tdqαβf(d,q)(17)将静止坐标系下的电压方程转换到同步旋转坐标系 d − q d-q dq下可以得到(注意此时的变换矩阵是 θ e \theta_e θe的函数,即是时间的函数): T d q − α β u d q = R T d q − α β i d q + d d t T d q − α β ψ d q = T d q − α β R i d q + T d q − α β d d t ψ d q + ψ d q d d t T d q − α β (18) \begin{aligned}T_{dq-\alpha\beta}\boldsymbol{u_{dq}}&=RT_{dq-\alpha\beta}\boldsymbol{i_{dq}}+\frac{d}{dt}T_{dq-\alpha\beta}\boldsymbol{\psi_{dq}}\\&=T_{dq-\alpha\beta}R\boldsymbol{i_{dq}}+T_{dq-\alpha\beta}\frac{d}{dt}\boldsymbol{\psi_{dq}}+\boldsymbol{\psi_{dq}}\frac{d}{dt}T_{dq-\alpha\beta}\end{aligned}\tag{18} Tdqαβudq=RTdqαβidq+dtdTdqαβψdq=TdqαβRidq+Tdqαβdtdψdq+ψdqdtdTdqαβ(18)将变换矩阵 T d q − α β T_{dq-\alpha\beta} Tdqαβ进行微分运算可以得到: d d t T d q − α β = ω e [ − s i n θ e − c o s θ e c o s θ e − s i n θ e ] (19) \frac{d}{dt}T_{dq-\alpha\beta}=\omega_e\begin{bmatrix}-sin\theta_e&-cos\theta_e\\cos\theta_e&-sin\theta_e\end{bmatrix}\tag{19} dtdTdqαβ=ωe[sinθecosθecosθesinθe](19)通过计算可以得到: T α β − d q T d q − α β = [ 1 0 0 1 ] T α β − d q d d t T d q − α β = [ 0 − 1 1 0 ] (20) \begin{aligned}T_{\alpha\beta-dq}T_{dq-\alpha\beta}=&\begin{bmatrix}1&0\\0&1\end{bmatrix}\\T_{\alpha\beta-dq}\frac{d}{dt}T_{dq-\alpha\beta}=&\begin{bmatrix}0&-1\\1&0\end{bmatrix}\end{aligned}\tag{20} TαβdqTdqαβ=TαβdqdtdTdqαβ=[1001][0110](20)将式(18)左右两端同时乘以 T α β − d q T_{\alpha\beta-dq} Tαβdq,得到同步旋转坐标系下的电压方程: { u d = R i d + d d t ψ d − ω e ψ q u q = R i q + d d t ψ q + ω e ψ d (21) \left\{\begin{aligned}u_d = Ri_d+\frac{d}{dt}\psi_d-\omega_e\psi_q\\u_q = Ri_q+\frac{d}{dt}\psi_q+\omega_e\psi_d\end{aligned}\right.\tag{21} ud=Rid+dtdψdωeψquq=Riq+dtdψq+ωeψd(21)其中磁链方程式(11)可以表示为: [ ψ a ψ b ψ c ] = T d q − a b c [ ψ d ψ q ] = [ L m 3 + L l 3 − 0.5 L m 3 − 0.5 L m 3 − 0.5 L m 3 L m 3 + L l 3 − 0.5 L m 3 − 0.5 L m 3 − 0.5 L m 3 L m 3 + L l 3 ] T d q − a b c [ i d i q ] + ψ f [ c o s ( θ e ) c o s ( θ e − 2 π 3 ) c o s ( θ e + 2 π 3 ) ] (22) \begin{bmatrix}\psi_a\\\psi_b\\\psi_c\end{bmatrix}=T_{dq-abc}\begin{bmatrix}\psi_d\\\psi_q\end{bmatrix}=\begin{bmatrix}L_{m3}+L_{l3}&-0.5L_{m3}&-0.5L_{m3}\\-0.5L_{m3}&L_{m3}+L_{l3}&-0.5L_{m3}\\-0.5L_{m3}&-0.5L_{m3}&L_{m3}+L_{l3}\end{bmatrix}T_{dq-abc}\begin{bmatrix}i_d\\i_q\end{bmatrix}+\psi_f\begin{bmatrix}cos(\theta_e)\\cos(\theta_e-\frac{2\pi}{3})\\cos(\theta_e+\frac{2\pi}{3})\end{bmatrix}\tag{22} ψaψbψc =Tdqabc[ψdψq]= Lm3+Ll30.5Lm30.5Lm30.5Lm3Lm3+Ll30.5Lm30.5Lm30.5Lm3Lm3+Ll3 Tdqabc[idiq]+ψf cos(θe)cos(θe32π)cos(θe+32π) (22)两侧同时乘以变换矩阵 T a b c − d q T_{abc-dq} Tabcdq化简后得到:
[ ψ d ψ q ] = [ L m 3 + 1.5 L l 3 0 0 L m 3 + 1.5 L l 3 ] [ i d i q ] + ψ f [ 1 0 ] = [ L d i d + ψ f L q i q ] (23) \begin{bmatrix}\psi_d\\\psi_q\end{bmatrix}=\begin{bmatrix}L_{m3}+1.5L_{l3}&0\\0&L_{m3}+1.5L_{l3}\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix}+\psi_f\tag{23}\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}L_di_d+\psi_f\\L_qi_q\end{bmatrix} [ψdψq]=[Lm3+1.5Ll300Lm3+1.5Ll3][idiq]+ψf[10]=[Ldid+ψfLqiq](23)将式(23)代入式(21)得到完整的同步旋转坐标系下的电压方程: { u d = R i d + L d d d t i d − ω e L q i q u q = R i q + L q d d t i q + ω e ( L d i d + ψ f ) (24) \left\{\begin{aligned}u_d &= Ri_d+L_d\frac{d}{dt}i_d-\omega_eL_qi_q\\u_q &= Ri_q+L_q\frac{d}{dt}i_q+\omega_e(L_di_d+\psi_f)\end{aligned}\right.\tag{24} uduq=Rid+LddtdidωeLqiq=Riq+Lqdtdiq+ωe(Ldid+ψf)(24)此时的电磁转矩方程可写为:(推导待补充) T e = 3 2 p n i q [ i d ( L d − L q ) + ψ f ] (25) T_e =\frac{3}{2}p_ni_q[i_d(L_d-L_q)+\psi_f]\tag{25} Te=23pniq[id(LdLq)+ψf](25)

永磁同步电机的运动方程

  电机的机械运动方程由力矩平衡方程给出: J d 2 θ m d t 2 + B d θ m d t = J d ω m d t + B ω m = T e − T L (26) J\frac{d^2\theta_m}{dt^2}+B\frac{d\theta_m}{dt}=J\frac{d\omega_m}{dt}+B\omega_m=T_e-T_L\tag{26} Jdt2d2θm+Bdtdθm=Jdtdωm+Bωm=TeTL(26)其中 J J J为转动惯量; B B B为阻尼系数; θ m \theta_m θm ω m \omega_m ωm分别为机械角度和机械角速度; T e T_e Te T L T_L TL分别为电磁转矩和负载转矩。

  • 12
    点赞
  • 71
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值