转向架结构强度与疲劳分析毕业论文【附代码+数据】

✅ 博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或查看文章底部二维码

 ✅ 感恩科研路上每一位志同道合的伙伴!!!

(1) 转向架结构有限元模型的建立

高速列车转向架作为列车运行中的关键部件,承受着多重交变荷载,确保其结构的强度和稳定性对列车运行安全至关重要。本文首先针对转向架结构建立了有限元分析模型,具体以CRH2型转向架为研究对象,基于其主体结构进行建模。在建模过程中,通过有限元法对转向架进行网格离散化,保证模型在仿真计算时的精度与计算效率。此外,本文充分考虑了转向架在运行中的复杂工况及载荷特性,根据实际工况设计试验参数,确定转向架的材料属性、边界条件及载荷分布,构建了能够反映实际运行状况的有限元模型。这一模型的建立为后续的强度与疲劳分析奠定了基础。

在此过程中,模型的离散化精度对分析结果具有决定性作用。因此,本文对网格划分进行了细致的处理,以保证结构应力集中区的精确模拟。同时,根据不同的材料属性和几何尺寸,设定了符合实际工程条件的边界约束。通过这种高精度建模,确保了后续分析结果的可靠性。

(2) 转向架结构强度分析

转向架结构的强度直接关系到列车的运行安全及稳定性,因此,强度分析是转向架设计中的重要环节。本文基于建立的有限元模型,采用UIC615-4加载标准,针对转向架的关键构件进行载荷计算,分析其在各种工况下的结构强度表现。本文共设置了失稳状态下的四种工况以及列车运行状态下的九种工况,以模拟转向架在不同运行条件下的受力情况。

在分析过程中,通过仿真计算得到了转向架在这些工况下的应力分布云图,提取了应力最大位置的应力值,并根据这些应力数据,确定了转向架结构中的危险点。根据计算结果,转向架在两种状态下的静强度都有较大余量,表明其强度性能能够满足材料的强度要求,具有较好的安全性。此外,通过应力分析结果,本文还识别了在特定工况下可能出现的局部应力集中区域,这些区域将作为结构优化设计的重点对象。

(3) 转向架焊接结构的疲劳极限评估

焊接结构的疲劳性能对于高速列车转向架的长期运行安全同样至关重要。本文在疲劳评估部分,基于转向架运行状态下九种工况的应力计算结果,选取了24条焊接焊缝作为研究对象。为了确保评估结果的精确性,本文采用了名义应力法提取各焊缝的应力值,并绘制了每条焊缝的Goodman疲劳曲线图。

根据仿真计算结果,结合名义应力法对各焊缝进行疲劳强度评估,得出了焊缝的应力等级及其疲劳状态。在评估过程中,本文严格按照国际标准对焊缝的疲劳极限进行分析,得出各焊缝在疲劳状态下的安全裕度。最终评估结果显示,所有焊缝的疲劳强度均满足设计要求,表明转向架焊接结构在长时间运行中具备较高的疲劳寿命。

(4) 转向架结构几何尺寸优化设计

为了进一步提高转向架的整体性能,本文对其几何尺寸进行了优化设计。基于失稳状态下四种工况的应变计算结果,选取了21种板件作为优化对象。通过有限元算法,对这些板件的厚度进行了几何尺寸优化,以期在保证结构强度与疲劳性能的前提下,进一步减轻转向架的自重。

在优化过程中,本文通过多次仿真计算,得出了各部件板壳厚度的最优解,并根据选取原则确定了最终的优化尺寸。优化后的转向架构架整体质量减少了0.11吨,降低了6.2%,有效实现了结构的轻量化目标。通过对优化后的转向架模型进行强度及疲劳极限校核验证,结果表明优化设计后的转向架在结构强度和疲劳极限方面依旧满足设计要求,并且在某些关键工况下具有更大的安全余量。

% 初始化转向架有限元分析模型
clear; clc;

% 定义材料属性
E = 210e9; % 弹性模量 (Pa)
nu = 0.3; % 泊松比
rho = 7800; % 密度 (kg/m^3)

% 定义几何参数
thickness = 0.01; % 板厚 (m)
L = 2.5; % 转向架构架长度 (m)
W = 1.2; % 转向架构架宽度 (m)
H = 0.5; % 转向架高度 (m)

% 生成有限元模型
model = createpde('structural','static-solid');

% 生成转向架矩形结构的几何形状
rect = multicuboid(L,W,H); % 定义转向架三维几何结构
geometryFromEdges(model,rect); % 从几何体创建有限元模型

% 定义边界条件
structuralBC(model,'Face',1,'Constraint','fixed'); % 固定一面
structuralBC(model,'Face',2,'Constraint','free'); % 另一面自由

% 定义材料特性
structuralProperties(model,'YoungsModulus',E,'PoissonsRatio',nu,'MassDensity',rho);

% 定义网格划分
generateMesh(model,'Hmax',0.05); % 最大单元大小为0.05米

% 定义载荷条件
structuralBoundaryLoad(model,'Face',3,'SurfaceTraction',[0; -10000; 0]); % 施加垂直向下的力

% 求解静态结构分析
result = solve(model);

% 可视化结果
figure;
pdeplot3D(model,'ColorMapData',result.VonMisesStress); % 显示等效应力分布
title('转向架结构等效应力分布');
xlabel('X 方向 (m)');
ylabel('Y 方向 (m)');
zlabel('Z 方向 (m)');
colorbar;

% 焊缝疲劳分析
weldLength = 0.2; % 焊缝长度 (m)
stress_amplitude = 150e6; % 焊缝名义应力幅值 (Pa)
R = 0.1; % 应力比

% 计算名义应力幅值的Goodman曲线
n = 100; % 数据点数量
mean_stress = linspace(0,stress_amplitude,n);
fatigue_strength = stress_amplitude./(1-mean_stress/stress_amplitude);

% 绘制Goodman曲线
figure;
plot(mean_stress,fatigue_strength,'-r');
title('焊缝的Goodman疲劳曲线');
xlabel('平均应力 (Pa)');
ylabel('疲劳强度 (Pa)');
grid on;

% 几何优化:调整板壳厚度
optimal_thickness = linspace(0.005,0.015,21); % 不同板壳厚度取值范围
optimized_mass = zeros(size(optimal_thickness));

for i = 1:length(optimal_thickness)
    thickness = optimal_thickness(i);
    generateMesh(model,'Hmax',0.05);
    result = solve(model);
    stress = result.VonMisesStress;
    
    % 计算优化后的质量
    optimized_mass(i) = sum(stress(:))*thickness*rho;
end

% 绘制质量优化曲线
figure;
plot(optimal_thickness,optimized_mass,'-b');
title('优化后的转向架结构质量');
xlabel('板壳厚度 (m)');
ylabel('质量 (kg)');
grid on;

disp('转向架结构强度与疲劳分析完成。');

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值