📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)期权定价模型参数估计研究
期权是全球资本市场最具活力的金融风险管理工具之一。如何测算期权的合理价格是其存在与健康发展的关键。1997年诺贝尔经济学奖授予了期权定价公式的发明人Scholes和Merton,体现了经济学界对期权定价理论价值的充分肯定。B-S模型问世以来,在学术界和实务界引起了强烈反响。在广泛应用的同时,学者对其准确性开展了深入的检验,并通过大量的实证研究发现,市场并非满足理想中的基本假设。不少经济学家对原有数理金融理论进行重新审视,对模型中存在的问题发表了不同的看法,从完善与发展B-S模型的角度出发,进行了很多扩展研究。尽管这些研究极大地丰富和发展了期权定价理论与方法,但仍存在一些不足。
-
中低频量化交易下的参数估计:
- 首位存放式遗传算法:针对中低频量化交易,设计了首位存放式遗传算法估计Heston期权定价模型参数。该算法具有避免丢失最优解和并行搜索的特点,有很好的概率跳出局部极小值,以概率1收敛到全局最小值。计算实验中,利用香港恒生股票指数期权的交易数据为样本,得到待估参数,并用该参数对预测期的看涨期权和看跌期权进行了模拟定价。数值结果与进化过程表明,算法耗时满足中低频量化交易策略的实时性要求,在训练样本数据集上的定价精度较高,在预测期上的模拟定价精度令人满意,一定程度上克服了传统算法的不足。
- 实证分析:通过实证分析,比较了首位存放式遗传算法与其他传统算法的性能。结果表明,首位存放式遗传算法在处理多参数估计问题时具有较高的准确性和稳定性,能够有效避免局部极小值的陷阱,提高模型的鲁棒性。
-
高频量化交易下的参数估计:
- 两阶段启发式算法:针对高频量化交易,设计了一种基于卷积神经网络的两阶段启发式算法估计期权定价模型参数。算法核心思想是:以前面设计的遗传算法在训练实例上积累历史信息,基于卷积神经网络对其进行学习和泛化,并利用对新实例的泛化结果引导PSO算法求解新实例。计算实验中,以Heston模型为例,采用50ETF期权1分钟高频交易数据,数值结果表明: