深度学习之动量momentum介绍

本章节将介绍深度学习中动量的相关概念和应用。

1. 动量的基本原理

        动量是一种用于加速梯度下降的技术。

        它通过累积过去梯度的指数加权平均来计算当前更新方向。

        这样可以增强梯度下降的稳定性,加快收敛速度。

2. 动量的数学公式

        动量更新公式为:v = γv - η∇L(θ)

        其中v是动量累积项,γ是动量因子,η是学习率,∇L(θ)是梯度。

        每次迭代, v会根据之前的动量和当前梯度进行更新。

        参数θ则是用v来更新,而不是直接使用梯度。

3. 动量的作用

        动量可以加快模型收敛,特别是对于梯度较小的平坦区域。

        它

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值