由奈奎斯特采样定理理解带通采样定理

终于写到这篇博文,相比于低通采样定理,带通采样定理在刚开始接触时,是真的难理解。现在,就由让我来引导你弄清楚带通采样定理吧。

  • 首先,为什么要有带通采样定理这个东西呢,对于所有的信号都使用奈奎斯特采样定理它不香吗?对于一些低频信号,使用奈奎斯特采样定理,那确实挺好。但是,科技在发展呀,现在基带信号骑在载波信号上形成的调制信号,那真的是层出不穷,载波信号有的上来就是三十多G,而基带信号的带宽可能就10M。现在我想把这个调制信号经过采样变成数字信号,我们要是使用奈奎斯特采样定理,你自己算算采样频率fs要多大,六七十Ghz,当然理论上这是可以采样的,但是,重要的是但是:实际中,你要做个这样的A/D转换器?太难了。
  • 奈奎斯特采样定理说明采样频率fs要不小于信号最高频率fH的两倍,最后就能无失真的恢复原信号。如果将从0到fH表示为这个信号的带宽(当然,这时的信号是个低频信号,比较好理解,别又是三四十Ghz的信号了),这时候其实也可以表示为fs只要不小于原信号两倍的带宽即2B就行了。而带通采样定理呢?fs也是以不小于原信号的带宽的两倍为条件的,当然可以根据fH与原信号带宽的关系,分为等于两倍带宽和大于两倍带宽两种。这是下面要讲的,这里看不懂,没关系。感觉还是补充一下什么是带宽吧,如下图中的B就是该信号的带宽。其中f0是中心频率,假设其是载波的频率。
    在这里插入图片描述
  • 下面可以直接上图了:
    图(1)

这是原始信号的频谱图,现在我们要对于这个频谱图对应的时域信号x(t)进行采样,时域采样对应着频域的啥?频谱的周期延拓呗。下面这个图就是上面的频谱图进行周期延拓后的图。
在这里插入图片描述
当然,这个图只是一个特例,即是一个极限,刚好经过fs采样后,延拓后的频谱首尾相连,其实中间也可以是有空隙的,这里是为了由极限来推出公式而已。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值