【数据结构和算法】常用基本算法汇总1 贪心算法 分治算法

本文详细介绍了贪心算法和分治算法的基本概念、思路、适用问题及实现框架。贪心算法通过局部最优解求解问题,适用于如背包问题、最短路径等场景。分治算法将大问题分解为小问题求解,如二分搜索、合并排序等。Dijkstra算法是贪心算法在求解单源最短路径问题中的应用,而哈夫曼编码和最小生成树(Prim、Kruskal算法)是贪心策略的实际例子。
摘要由CSDN通过智能技术生成

原文参考自 头条 Java后端开发

贪心算法

一、基本概念

在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。所以,对所采用的贪心策略一定要仔细分析其是否满足无后效性。

二、基本思路

1.建立数学模型来描述问题。

2.把求解的问题分成若干个子问题。

3.对每一子问题求解,得到子问题的局部最优解。

4.把子问题的解局部最优解合成原来解问题的一个解。

三、贪心算法适用的问题

贪心策略适用的前提是:局部最优策略能导致产生全局最优解。实际上,贪心算法适用的情况很少。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。

四、贪心算法的实现框架

从问题的某一初始解出发;

while(能朝给定总目标前进一步)

{

利用可行的决策,求出可行解的一个解元素;

}

由所有解元素组合成问题的一个可行解;

五、贪心策略的选择

因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。

六、经典例子

最优装载问题 (如果价值相当,直接按照重量排序)

背包问题 (按照性价比排序)

会议安排 (按照会议结束时间从小到打排序,结束时间相等,按开始时间从小到大排序)

最短路径

  • 这是一个求单源最短路径的问题。给定有向带权图G =(V,E),其中每条边的权是非负实数。此外,给定V中的一个顶点,称为源点。现在要计算从源到所有其他各顶点的最短路径长度,这里路径长度指路上各边的权之和。
  • Dijkstra 算法是解决单源最短路径问题的贪心算法,它先求出长度最短的一条路径,再参照该最短路径求出长度次短的一条路径,直到求出从源点到其他各个顶点的最短路径。
  • Dijkstra算法的基本思想是首先假定源点为u,顶点集合V被划分为两部分:集合S和 V−S。初始时 S 中仅含有源点 u,其中 S 中的顶点到源点的最短路径已经确定,简单用数组flag区分就行。集合V−S中所包含的顶点到源点的最短路径的长度待定,称
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值