Advanced RAG(Retrieval-Augmented Generation) 是在经典 RAG 模型基础上发展出的一系列技术和策略,旨在提高 RAG 模型在复杂任务中的表现。这些技术通常涉及更高效的检索和生成方法,更智能的问答流程,以及更强的模型自我反馈机制。下面是对这些技术的简要解释:
1. RRR (Refine, Retrieve, Rerank)
- Refine: 通过对初始生成的文本进行细化或修正,使其更加准确和相关。
- Retrieve: 从大型知识库或文档库中检索相关信息,以支持或补充生成的内容。
- Rerank: 对检索到的结果进行重新排序,确保最相关的信息排在前面,优化最终的输出。
2. Iter-RETGEN (Iterative Retrieval-Generation)
- Iterative Retrieval: 在生成答案的过程中,模型多次进行信息检索,逐步获得更详细或精确的信息。
- Generation: 在每次检索后,生成部分答案或整个答案。
- Iterative Process: 该过程是多轮次的,直到生成出令人满意的答案为止。这种方法特别适用于需要深度推理或多个步骤才能完成的问题。
3. Self Ask
- Self Ask: 是一种模型自我提问策略。模型在回答复杂问题时,会自行生成子问题,依次解答这些子问题,最终合成出完整的答案。这种方法能够更好地处理需要分解成多个步骤的问题。
4. Active RAG
- Active RAG: 通过主动学习策略改进 RAG 模型的表现。模型可以主动选择哪些样本用于训练,从而更加高效地学习重要的或难度较大的样本,提升整体性能。
5. Self-RAG
- Self-RAG: 模型在生成答案的过程中,自行生成候选答案并进行自我验证。通过交叉验证和自我对比,模型可以选择最可靠的答案输出。这种方法能够提高生成答案的准确性和鲁棒性。
这些技术和方法都致力于通过更智能的检索、更精细的生成和更强的自我反馈来提升 RAG 模型在各种复杂任务中的性能。