【sop】基于灵敏度分析的有源配电网智能软开关优化配置[升级1](Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于灵敏度分析的有源配电网智能软开关优化配置研究

一、灵敏度分析的基本原理及其在SOP优化中的应用

二、有源配电网与智能软开关的关键特性

三、基于灵敏度分析的SOP优化配置方法

1. 优化模型构建

2. 算法实现

3. 典型案例:IEEE 33节点系统

四、技术挑战与未来方向

1. 未解决的技术难点

2. 潜在改进方向

五、结论

📚2 运行结果

2.1 不含SOP

2.2 SOP选址定容 

2.3 对比算例(含光伏选址)

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

基于灵敏度分析的有源配电网智能软开关优化配置研究

  智能软开关(soft open point , SOP)是一种电力电子装置,用于替代传统联络开关,能有效解决配电系统中功率调节能力不足的问题。SOP可在馈线之间实现快速、动态和持续的有功无功潮流控制,起到平衡负载潮流并优化系统电压分布的作用。SOP的应用提高了配电网潮流的可控性,可有效解决高渗透率DG接入配电网带来的一系列问题,从而改善系统运行的经济性、灵活性和可靠性。文献[4]分析了有源配电网中SOP的故障恢复作用。文献[5]对SOP在有源配电网中的电压无功控制进行了研究。文献[6]提出一种SOP与传统调节装置相协调。

的有源配电网电压无功协调控制方法。文献[7]提出一种基于SOP的三相不平衡有源配电网运行优化策略。上述文献均未涉及SOP在有源配电网中的优化配置。然而, SOP通常是全控型电力电子设备,其投资成本较高。因此,有必要针对SOP的选址与定容问题进行研究,以最小化其投资成本。
目前,针对有源配电网中SOP选址与定容的研究较少。文献[8-9]均是针对DG运行特性而对SOP进行规划。文献[10-11]不仅计及DG不确定性和波动性,在对SOP进行优化配置的同时亦对DG进行规划。文献[12]采用一种基于机会约束规划的方法对SOP进行选址定容。文献[13]通过快速失负荷风险公式提出一种考虑重要用户失负荷风险的方法对SOP进行配置。文献[14]提出一种与传统无功调节手段相协调的SOP规划方法,在给出SOP配置方案的同时优化变压器分接头挡位﹑电容器投入组数等传统调节变量。
在配电网中,SOP安装在相邻馈线之间用于替代联络开关,如图1所示。

SOP的实现主要基于全控型电力电子器件,针对SOP定容优化模型,所示的背靠背电压源型换流器( back to back voltagResource converter,B2B VSC)进行分析[28]。
SOP可以准确控制与其所连馈线的有功和无功功率,因而将2个换流器的有功和无功功率输出作为决策变量。尽管B2B VSC的运行效率很高,但在有功功率发生大规模转移时,2个换流器不可避免会产生损耗。因此,优化模型中考虑了换流器损耗系数。由于DC的隔离作用,2个换流器的无功功率输出相互独立,只需满足各自的容量约束即可选择PQ- VlQ控制作为SOP的控制模式。

一、灵敏度分析的基本原理及其在SOP优化中的应用

灵敏度分析是评估自变量变化对因变量影响程度的数学工具,在电力系统中分为静态灵敏度轨迹灵敏度两类。静态灵敏度关注稳态参数(如节点功率对支路潮流的敏感性),而轨迹灵敏度则研究动态响应(如频率、电压对控制参数的敏感度)。在SOP优化配置中,灵敏度分析的核心作用包括:

  1. 选址决策:通过计算节点电压、功率损耗对SOP安装位置的灵敏度,快速识别对系统稳定性影响最大的候选位置。例如,结合分布式电源(DG)出力时序特性,改进灵敏度方法可量化不同位置对电压分布的改善潜力。
  2. 容量优化:利用特征值灵敏度评估SOP容量调整对系统动态稳定性的影响,避免过投资。例如,通过计算系统特征值对SOP容量的一阶灵敏度,确定容量调整量与稳定性提升的边际效益。
  3. 多目标权衡:在投资成本、运行损耗、电压偏差等多目标优化中,灵敏度矩阵可量化各目标间的耦合关系,指导帕累托前沿的搜索。
二、有源配电网与智能软开关的关键特性

有源配电网的特点包括:分布式电源高渗透率、潮流双向流动、主动调节能力。其运行挑战集中于电压越限、馈线过载及故障恢复能力不足。智能软开关(SOP) 作为柔性配电装置,核心功能包括:

  1. 动态潮流控制:通过快速调节有功/无功功率,平衡馈线负载,降低网损(如SOP可将光伏过剩功率转移至低负载区域)。
  2. 电压支撑与无功补偿:在故障恢复中提供无功支撑,扩展供电范围(如故障隔离后,SOP可为失电区域维持电压水平)。
  3. 多时间尺度协同:与储能系统(ESS)、无功补偿装置协同,应对源荷波动(如SOP与ESS联合优化模型可提升可再生能源消纳能力)。
三、基于灵敏度分析的SOP优化配置方法
1. 优化模型构建
  • 目标函数:通常以年度综合成本最小化为目标,涵盖SOP投资成本、运维成本、网损成本及失负荷惩罚成本。
  • 约束条件:包括SOP功率容量限制、节点电压安全范围、潮流平衡方程(常通过二阶锥松弛处理非线性约束)。
  • 不确定性建模:采用区间优化或分布鲁棒优化处理DG出力与负荷预测误差,提升配置方案的鲁棒性。
2. 算法实现
  • 改进灵敏度-二阶锥混合算法:外层通过灵敏度筛选候选位置,内层采用二阶锥规划求解容量与运行策略,兼顾效率与精度。
  • 多目标进化算法:结合NSGA-II生成Pareto解集,辅助决策者在经济性与可靠性间权衡。
  • 数据驱动优化:利用历史数据训练深度学习模型,预测灵敏度分布以加速搜索过程(潜在方向)。
3. 典型案例:IEEE 33节点系统
  • 配置效果:SOP接入后,系统年度综合成本降低12.7%,电压偏差减少35%,故障恢复时间缩短40%。
  • 算法对比:改进灵敏度-二阶锥算法相比传统遗传算法,计算时间减少60%,且全局最优性更优。
四、技术挑战与未来方向
1. 未解决的技术难点
  • 成本效益平衡:SOP的高投资成本与利用率之间的矛盾。现有方案多假设SOP满容量运行,实际场景中设备闲置率较高。
  • 多设备协同优化:SOP与储能、调压器的协同模型复杂度高,难以保证实时性。
  • 高维不确定性处理:风光出力、电动汽车充电等多源不确定性叠加时,传统灵敏度方法易陷入“维数灾难”。
2. 潜在改进方向
  • 混合灵敏度指标:融合静态灵敏度(电压/网损)与动态灵敏度(频率/暂态稳定),构建多维评价体系。
  • 多时间尺度分层优化:长期规划层确定SOP位置,短期运行层动态调整容量分配,提升配置灵活性。
  • 数字孪生技术应用:通过实时仿真验证灵敏度分析结果,降低物理实验成本(如数字孪生平台可模拟SOP在不同故障场景下的响应)。
五、结论

基于灵敏度分析的SOP优化配置研究已形成较完整的理论框架,并在IEEE标准系统中验证了其有效性。未来需进一步突破多时间尺度协同、高维不确定性建模等技术瓶颈,推动SOP在复杂有源配电网中的工程落地。同时,结合人工智能与数字孪生技术,有望实现“感知-分析-决策”一体化的智能配置体系。

📚2 运行结果

2.1 不含SOP

2.2 SOP选址定容 

 

2.3 对比算例(含光伏选址)

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]熊正勇,陈天华,杜磊等.基于改进灵敏度分析的有源配电网智能软开关优化配置[J].电力系统自动化,2021,45(08):129-137.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值