✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着分布式电源(DG)在配电网中渗透率的不断提高,有源配电网的运行特性变得日益复杂。传统的机械开关在频繁操作和故障电流分断能力方面面临挑战,而智能软开关(ISS)以其快速响应、无触点切换和故障电流限制等优势,在提升有源配电网运行可靠性、灵活性和经济性方面展现出巨大潜力。然而,ISS的高昂成本 necessitates对其进行审慎的优化配置。本文旨在探讨基于灵敏度分析的有源配电网智能软开关优化配置方法。通过分析不同运行状态下系统对ISS配置的敏感性,可以有针对性地确定ISS的安装位置和容量,从而在满足系统运行需求的前提下,最大限度地提高ISS的投资效益,降低配置成本。本文将深入探讨灵敏度分析在ISS优化配置中的理论基础、应用场景、具体方法以及未来的发展方向。
引言
近年来,为了应对全球能源危机和气候变化,可再生能源发电技术得到了飞速发展。太阳能光伏、风力发电等分布式电源被大量接入配电网,使得传统的无源配电网逐渐向有源配电网转型。有源配电网具有双向潮流、电压波动大、短路电流水平变化复杂等新特点,对配电网的运行控制和保护提出了新的挑战。传统的机械开关在频繁的潮流反转、故障分断以及孤岛运行切换等方面存在响应速度慢、操作寿命短、燃弧风险等缺点,难以适应有源配电网日益复杂的运行需求。
智能软开关作为一种先进的电力电子开关设备,凭借其毫秒级的快速响应能力、无触点切换特性、灵活的控制策略以及潜在的故障电流限制能力,为解决有源配电网面临的挑战提供了新的技术路径。ISS可以实现潮流的灵活控制、无缝切换、精准的故障隔离以及在孤岛运行模式下的稳定运行。然而,与传统的机械开关相比,智能软开关的制造成本和运行维护成本相对较高,因此,如何合理地配置ISS,在满足系统运行需求的前提下,实现经济最优,成为有源配电网建设和运行中亟待解决的关键问题。
传统的配电网设备配置优化方法通常基于经验或者简单的容量裕度设计,难以有效应对有源配电网的复杂性。随机优化、启发式算法等方法虽然能够找到近似最优解,但计算复杂度高,且对输入数据的准确性要求较高。基于灵敏度分析的优化方法通过研究系统性能指标对ISS配置参数变化的敏感程度,可以有效地识别出对系统性能影响最大的配置位置和容量,从而指导ISS的优化布局。这种方法计算效率高,物理意义明确,特别适用于大规模配电网的ISS优化配置问题。
本文将重点探讨基于灵敏度分析的有源配电网智能软开关优化配置方法。首先,阐述智能软开关在有源配电网中的应用场景和优势。其次,详细介绍灵敏度分析在配电网优化配置中的理论基础。然后,探讨基于灵敏度分析的ISS优化配置的具体方法和步骤,包括敏感性指标的选取、敏感性分析的实现以及基于敏感性分析的优化配置策略。最后,总结全文,并展望未来基于灵敏度分析的ISS优化配置技术的发展方向。
一、 智能软开关在有源配电网中的应用场景与优势
智能软开关以其独特的电力电子技术,在有源配电网的多个方面展现出卓越的性能和应用潜力。其主要应用场景和优势包括:
-
提高供电可靠性与弹性: ISS能够实现对配电线路的快速、无缝切换,有效减少故障持续时间,缩小停电范围。在配电网发生故障时,ISS可以快速隔离故障区域,并通过与相邻馈线或分布式电源的配合,实现非故障区域的供电恢复,提高供电的可靠性和韧性。例如,在联络线上配置ISS可以实现不同馈线之间的快速转供,提高故障恢复能力。
-
优化潮流控制与电压调节: 有源配电网中分布式电源的波动性和不确定性导致潮流方向和大小频繁变化,引起电压波动甚至越限。ISS可以通过其内部的电力电子器件灵活控制潮流方向和大小,实现对配电网潮流的优化分配和电压的精准调节。例如,在馈线首端或分支节点配置ISS,可以实现对注入电流的控制,平抑电压波动。
-
支持孤岛运行与微网建设: 在主网故障或计划停运时,有源配电网可以利用本地的分布式电源形成孤岛运行模式,保证重要负荷的持续供电。ISS在孤岛运行模式下的切换和控制中发挥关键作用,能够实现电网与孤岛之间的平稳切换,并维持孤岛内部的电压和频率稳定。这为微电网的建设和运行提供了重要的技术支撑。
-
限制短路电流: 分布式电源的接入增加了配电网的短路电流水平,对现有设备的耐受能力提出挑战。部分ISS具备故障限流功能,可以在故障发生时快速增加内阻,限制短路电流的幅值,从而降低对开关设备和电缆的应力,提高系统的安全性。
-
增强配电网可观测性与可控性: ISS通常集成了先进的传感、通信和控制功能,可以实时监测系统运行状态,并将数据传输至配电自动化系统。这提高了配电网的可观测性,为更高级的智能控制策略提供了数据基础。同时,ISS的灵活控制能力也增强了配电网的可控性,为实现精细化管理和优化运行提供了可能。
综上所述,智能软开关在提升有源配电网运行性能、提高供电可靠性、增强灵活性和可控性方面具有显著优势。然而,其高昂的成本使得有必要对其进行科学合理的配置,以充分发挥其效益。
二、 灵敏度分析在配电网优化配置中的理论基础
灵敏度分析是一种研究系统输出对输入参数变化敏感程度的方法。在配电网优化配置问题中,灵敏度分析的核心思想是量化配电网的关键性能指标(如网损、电压偏差、供电可靠性指标等)对设备配置(如开关的安装位置、容量等)变化的响应程度。通过计算这些敏感性,可以识别出对系统性能影响最大的配置位置和参数,从而指导优化决策。
灵敏度分析在配电网中的应用基于以下理论基础:
-
配电网潮流计算: 灵敏度分析需要基于配电网的潮流计算结果。通过潮流计算,可以获得配电网在特定运行状态下的节点电压、支路电流、功率损耗等关键运行参数。这些参数是计算敏感性指标的基础。常用的潮流计算方法包括牛顿-拉夫逊法、快速解耦法等。
-
系统性能指标: 在ISS优化配置中,需要选取能够反映系统运行效益或成本的性能指标作为优化目标。常见的性能指标包括:
- 网损:
反映电能在传输过程中的损失,降低网损可以提高能源利用效率。
- 电压偏差:
反映节点电压偏离额定值的程度,电压偏差过大可能影响用户设备的正常运行。
- 供电可靠性指标:
包括系统平均中断持续时间(SAIDI)、系统平均中断频率(SAIFI)等,反映系统供电的稳定性和可靠性。
- 投资成本与运行维护成本:
反映设备配置的经济性。
- 网损:
-
敏感性定义与计算: 灵敏度通常定义为系统性能指标相对于配置参数的偏导数。例如,节点电压对支路电导的灵敏度可以表示为节点电压变化量与支路电导变化量之比的极限。通过对配电网潮流方程进行微分,可以推导出各种性能指标对配置参数的解析或数值敏感性公式。
-
链式法则与伴随网络法: 对于复杂的配电网系统,直接计算偏导数可能非常困难。链式法则和伴随网络法等技术可以简化敏感性的计算过程。链式法则可以将复杂的敏感性计算分解为一系列简单的敏感性计算。伴随网络法则通过构建一个与原网络相关的伴随网络,将性能指标对网络参数的敏感性计算转化为在伴随网络中的潮流计算,从而大大降低计算复杂度。
-
敏感性排序与筛选: 计算得到各个配置位置和参数的敏感性后,可以对敏感性进行排序。敏感性较高的位置或参数表明在该位置配置ISS或改变其参数对系统性能影响较大,应优先考虑。通过设定敏感性阈值,可以筛选出对系统性能影响显著的关键位置,从而缩小优化搜索范围。
基于灵敏度分析的优化方法具有以下优势:
- 计算效率高:
相对于穷举法或复杂的启发式算法,灵敏度分析的计算复杂度较低,特别适用于大规模配电网。
- 物理意义明确:
敏感性指标直接反映了配置参数对系统性能的影响程度,便于理解优化决策的物理意义。
- 提供优化方向:
敏感性的正负号和大小可以指示优化的方向和幅度,有助于快速找到改进系统性能的关键点。
然而,需要注意的是,灵敏度分析通常基于系统的线性化模型,对于非线性系统或者系统运行状态发生较大变化时,敏感性分析结果可能存在一定的局限性。因此,在实际应用中,可能需要结合其他优化方法或者进行多场景分析。
三、 基于灵敏度分析的智能软开关优化配置方法
基于灵敏度分析的ISS优化配置方法通常包括以下步骤:
-
构建配电网模型: 建立包含配电线路、变压器、负荷、分布式电源以及备选ISS安装位置的配电网模型。模型应尽可能详细地描述设备的电气参数和拓扑结构。同时,需要考虑分布式电源的出力特性和负荷的时序变化。
-
确定优化目标与约束: 明确ISS优化配置的目标,例如最小化总成本(投资成本+运行维护成本+网损成本+停电损失成本)、最大化供电可靠性等。同时,需要考虑各种运行约束,如电压约束、潮流容量约束、故障电流约束等。
-
定义备选ISS类型与参数: 根据需求定义不同类型的ISS(如具有限流功能的ISS、仅具有快速开关功能的ISS等)及其可选的容量范围。
-
选择敏感性指标: 根据优化目标选择合适的敏感性指标。例如,如果优化目标是最小化网损,可以计算网损对ISS安装位置和容量的敏感性;如果优化目标是提高供电可靠性,可以计算供电可靠性指标对ISS安装位置的敏感性。
-
进行多场景运行分析: 考虑到有源配电网运行状态的多样性(如负荷波动、分布式电源出力变化、故障类型和位置等),需要在多个具有代表性的运行场景下进行潮流计算和敏感性分析。这有助于获得更全面和鲁棒的敏感性信息。
-
计算敏感性: 在每个运行场景下,计算所选敏感性指标对备选ISS安装位置和容量的敏感性。可以采用解析法、数值法或者伴随网络法进行计算。例如,对于网损对支路电导的敏感性,可以利用潮流方程对支路电导求偏导得到。对于供电可靠性指标的敏感性,可以通过模拟不同故障场景,计算ISS安装前后供电可靠性指标的变化量来衡量。
-
聚合多场景敏感性: 由于不同场景下系统的敏感性可能存在差异,需要将多个场景下的敏感性信息进行聚合。可以采用加权平均、最大敏感性选取等方法对敏感性进行综合评估,以反映不同场景下ISS配置的重要性。例如,可以根据不同场景发生的概率对敏感性进行加权平均。
-
基于敏感性进行ISS位置筛选: 根据聚合后的敏感性信息,对备选ISS安装位置进行排序。优先选择敏感性较高的位置进行ISS安装。可以通过设定敏感性阈值来筛选出最佳的安装位置集合。例如,可以选择敏感性排名前N的位置作为潜在的ISS安装点。
-
在筛选位置进行ISS容量优化: 在确定了ISS的安装位置后,可以进一步优化每个安装位置上ISS的容量。这通常需要结合经济性分析,权衡ISS容量与其带来的效益(如网损降低、可靠性提升)之间的关系。可以在筛选出的位置上,针对不同的ISS容量进行更精细的性能和成本评估。
-
综合评估与决策: 结合敏感性分析结果、性能指标计算以及经济性分析,对不同的ISS配置方案进行综合评估。最终确定满足系统运行需求且具有最佳经济效益的ISS优化配置方案。
具体方法举例:
以最小化网损为优化目标为例,可以采用以下基于灵敏度分析的方法进行ISS位置筛选:
- 网损对支路电导的敏感性:
ISS的接入可以通过改变潮流分布来影响网损。支路的电导反映了其传输能力,因此网损对支路电导的敏感性可以反映在该支路附近配置ISS对网损的影响程度。敏感性越大,表明在该支路附近配置ISS对网损的改善潜力越大。
- 计算方法:
通过对配电网潮流方程进行微分,可以推导出网损对支路电导的解析敏感性公式。在每个运行场景下进行潮流计算后,即可计算得到各支路的网损敏感性。
- 位置筛选:
考虑备选ISS安装位置附近的支路网损敏感性,选择敏感性较高的位置作为潜在的ISS安装点。
以提高供电可靠性为优化目标为例,可以采用以下基于灵敏度分析的方法进行ISS位置筛选:
- 可靠性指标对联络开关位置的敏感性:
在配电网中,联络开关的位置对故障后的转供能力和恢复时间至关重要。ISS作为一种先进的联络开关,其安装位置对供电可靠性指标(如SAIDI、SAIFI)具有显著影响。可以通过模拟不同故障场景,计算在不同位置安装ISS对可靠性指标的改善程度来衡量敏感性。改善程度越大,表明在该位置安装ISS对提高可靠性的潜力越大。
- 计算方法:
模拟配电网中可能发生的单点或多点故障,计算在不同备选位置安装ISS前后的供电可靠性指标。可靠性指标的改善量即可作为该位置的敏感性。
- 位置筛选:
根据不同备选位置的可靠性敏感性,选择敏感性较高的位置作为潜在的ISS安装点。
四、 挑战与未来发展方向
尽管基于灵敏度分析的ISS优化配置方法具有诸多优势,但在实际应用中仍面临一些挑战,同时也存在进一步的发展空间:
挑战:
- 有源配电网的非线性与不确定性:
有源配电网中分布式电源的出力波动和负荷变化具有高度的非线性和不确定性,而传统的灵敏度分析方法通常基于线性化模型,可能难以准确反映实际系统的复杂性。
- 多目标优化:
ISS的优化配置往往需要同时考虑多个目标,如经济性、可靠性、电压质量等,而不同目标对ISS配置的敏感性可能存在差异,如何有效地进行多目标敏感性分析和综合权衡是一个挑战。
- 故障场景的考虑:
供电可靠性是ISS优化的重要目标,而可靠性分析需要考虑各种故障场景。如何高效地模拟和分析大量故障场景下的系统敏感性是一个复杂的问题。
- 动态性能的考量:
传统的灵敏度分析主要关注稳态运行下的敏感性,而ISS在故障切换、孤岛运行等动态过程中的性能也至关重要。如何将动态性能的敏感性纳入优化配置过程是一个挑战。
- 数据获取与处理:
进行准确的灵敏度分析需要详细的配电网拓扑、设备参数、负荷数据和分布式电源出力预测数据。数据的获取、清洗和处理可能存在困难。
未来发展方向:
- 基于数据驱动的敏感性分析:
随着智能电网技术的不断发展,配电网运行数据日益丰富。可以利用大数据分析和机器学习技术,从历史运行数据中学习和提取系统对ISS配置的敏感性规律,克服传统模型方法的局限性。
- 考虑不确定性的鲁棒性敏感性分析:
针对有源配电网中分布式电源出力和负荷的不确定性,可以发展基于不确定性分析的鲁棒性敏感性分析方法,评估ISS配置在不同不确定性场景下的性能表现,从而提高优化结果的鲁棒性。
- 多目标灵敏度分析与决策:
发展多目标灵敏度分析方法,量化ISS配置对不同优化目标的敏感性,并结合多属性决策理论,为ISS的综合优化配置提供科学依据。
- 考虑动态性能的敏感性分析:
探索将暂态稳定性和动态响应等性能指标的敏感性纳入ISS优化配置框架,以更好地评估ISS在动态运行中的作用和价值。
- 人工智能与灵敏度分析的融合:
将人工智能算法(如深度学习、强化学习等)与灵敏度分析相结合,利用AI的强大数据处理和模式识别能力,更有效地进行敏感性计算和优化搜索。
- 实时敏感性分析与自适应优化:
发展实时或准实时的敏感性分析方法,根据系统运行状态的变化动态调整ISS的优化配置策略,实现自适应优化。
五、 结论
智能软开关作为一种先进的电力电子技术,为有源配电网的升级改造提供了重要的技术支撑。对其进行科学合理的优化配置,是在满足系统运行需求的同时,最大限度地提高投资效益的关键。本文详细探讨了基于灵敏度分析的有源配电网智能软开关优化配置方法,阐述了其理论基础、应用场景和具体步骤。灵敏度分析通过量化系统性能对ISS配置的敏感程度,能够有效地识别出对系统性能影响最大的配置位置和容量,为ISS的优化布局提供了有力的指导。
尽管基于灵敏度分析的方法在有源配电网ISS优化配置中展现出巨大潜力,但仍需应对有源配电网的非线性、不确定性以及多目标优化等挑战。未来的研究应致力于发展基于数据驱动、考虑不确定性、多目标和动态性能的灵敏度分析方法,并将其与人工智能等先进技术相结合,以期实现更加精确、鲁棒和智能的ISS优化配置,为构建更加高效、可靠和智能的有源配电网奠定坚实基础。随着技术的不断发展,基于灵敏度分析的ISS优化配置必将在有源配电网的建设和运行中发挥越来越重要的作用。
⛳️ 运行结果
🔗 参考文献
[1] 熊正勇,陈天华,杜磊,等.基于改进灵敏度分析的有源配电网智能软开关优化配置[J].电力系统自动化, 2021, 45(8):9.DOI:10.7500/AEPS20191021004.
[2] 孙嘉,韩顺天,倪良华,等.基于支路功率灵敏度分析的柔性配电网智能软开关优化配置[J].电气传动, 2025(4).
[3] 马世乾,姚宗强,赵长伟,等.面向智能软开关的有源配电网分区分散式电压控制方法.CN201811065262.0[2025-05-08].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇