双向RRT*轨迹规划

这篇博客介绍了使用Python进行双向RRT*算法的轨迹规划,适用于智能机器人课设。通过修改参数可以显示动画,展示双向生成树的过程。代码以随机搜索为基础,实现了中等效果,且作者认为Python非常易学。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

智能机器人课设内容,所用语言为python

import copy
import math
import random
import time

import matplotlib.pyplot as plt
from scipy.spatial.transform import Rotation as Rot
import numpy as np
import matplotlib

matplotlib.use('TKAgg')

import matplotlib.pyplot as plt

from matplotlib.pyplot import plot,savefig
show_animation = False

class RRT:

    def __init__(self, obstacleList, randArea, expandDis=1.0, goalSampleRate=10, maxIter=200):
        self.start = None
        self.goal = None
        self.min_rand = randArea[0]
        self.max_rand = randArea[1]
        self.expand_dis = expandDis
        self.goal_sample_rate = goalSampleRate
        self.max_iter = maxIter
        self.obstacle_list = obstacleList
        self.node_list = None
        self.mode_list = None

    def rrt_star_planning(self, start, goal, animation=True):
        start_time = time.time()
        #初始化设置
        self.start = Node(start[0], start[1])
        self.goal = Node(goal[0], goal[1])
        self.node_list = [self.start]
        self.mode_list = [self.goal]
        path1 = None
        path2 = None
        lastPathLength = float('inf')  # 上一次路径
        lastPathLength1 = float('inf')  # 上一次路径
        lastPathLength2 = float('inf')  # 上一次路径

        for i in range(self.max_iter):
            rnd = self.sample()  # 随机取样
            nnr = self.sample()

            n_ind = self.get_nearest_list_index(self.node_list, rnd)  # 找到离当前点最近的节点
            m_ind = self.get_nearest_list_index(self.mode_list, nnr)  # 找到离当前点最近的节点

            nearestNode = self.node_list[n_ind]
            fairNode = self.mode_list[m_ind]  # 为终点也建立最近点

            # steer
            theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
            beta = math.atan2(nnr[1] - fairNode.y, nnr[0] - fairNode.x)  # 计算随机取样的点和最近的点之间的关系
            newNode = self.get_new_node(theta, n_ind, nearestNode)
            oldNode = self.get_new_node(beta, m_ind, fairNode)  # 起点、终点同时拓展

            noCollision = self.check_segment_collision(newNode.x, newNode.y, nearestNode.x, nearestNode.y)
            nno = self.check_segment_collision(oldNode.x, oldNode.y, fairNode.x, fairNode.y)  # 判断从终点当前点到最近的点,是否能拓展

            if noCollision:
                nearInds = self.find_near_nodes(newNode)  # 从这里开始改
                newNode = self.choose_parent(newNode, nearInds)
                self.node_list.append(newNode)
                self.rewire(newNode, nearInds)
                for node in self.mode_list:
                    d = self.line_cost(node, newNode)
                    if d < 1.0:
                        if self.check_segment_collision(node.x, node.y,
                                                        newNode.x, newNode.y):
                            judgednode = node

                            lastIndex = len(self.node_list) - 1
                            FirstIndex = len(self.mode_list) - 1

                            tempPath1 = self.get_final_course(newNode, lastIndex)
                            tempPath2 = self.get_first_course(judgednode, FirstIndex)
                            tempPathLen1 = self.get_path_len(tempPath1)
                            tempPathLen2 = self.get_path_len(tempPath2)
                            tempPathLen = tempPathLen1 + tempPathLen2+ d

                            if lastPathLength > tempPathLen:
                                path1 = tempPath1
                                lastPathLength = tempPathLen

                                if animation:
                                    self.draw_graph(judgednode, newNode, path1, path2)
                                tempPathLen = tempPathLen1 + tempPathLen2 + d

                                print("current path length: {}, It costs {} s".format(tempPathLen,
                                                                                      time.time() - start_time))
                                if time.time() - start_time >20:
                                    break


            if nno:  # 从终点出发的生成树是否接近对面已存在的点
                nearImds = self.find_near_modes(oldNode)
                oldNode = self.hoose_parent(oldNode, nearImds)

                self.mode_list.append(oldNode)
                self.remire(oldNode, nearImds)

                for node in self.node_list:
                    d = self.line_cost(node, oldNode)
                    if d < 1.0:
                        if self.check_segment_collision(node.x, node.y,
                                                        oldNode.x, oldNode.y):
                            judgenode = node
                            lastIndex = len(self.node_list) - 1
                            FirstIndex = len(self.mode_list) - 1

                            tempPath1 = self.get_final_course(judgenode, lastIndex)
                            tempPath2 = self.get_first_course(oldNode, FirstIndex)
                            tempPathLen1 = self.get_path_len(tempPath1)
                            tempPathLen2 = self.get_path_len(tempPath2)
                            tempPathLen = tempPathLen1 + tempPathLen2+ d
                            plt.plot(oldNode.x, oldNode.y, '-k')

                            if lastPathLength > tempPathLen:
                                path2 = tempPath2
                                lastPathLength = tempPathLen
                                tempPathLen = tempPathLen1 + tempPathLen2 + d
                                if animation:
                                    self.draw_graph(judgenode, oldNode, path1, path2)
                                print("current path length: {}, It costs {} s".format(tempPathLen, time.time() - start_time))


        r
### 双向RRT算法概述 双向RRT(Rapidly-exploring Random Tree)算法是一种改进型的随机树搜索方法,专门设计用于加速路径规划过程并提升解的质量。该算法通过同时从起点和终点生长两棵随机树来探索环境空间,从而显著提高了寻找可行路径的速度和效率[^2]。 ### 工作原理 双向RRT的核心理念在于利用两个方向上的扩展策略——一棵树从初始位置出发朝任意方向增长;另一棵树则从目标位置反向构建直至两者相遇形成连通路径。具体来说: - **初始化阶段**:分别创建根节点位于起始点和终止点处的一对空树。 - **迭代采样与延伸**: - 随机选取一个样本点作为新的候选节点; - 对于每棵树而言,在最近邻节点的基础上尝试沿直线移动至新选定点; - 如果成功,则更新对应侧的树结构并将此新增加的部分标记为已访问区域。 - **连接检测机制**:一旦某次操作使得两侧树木间存在直接可达关系时即停止扩张动作,并记录下当前形成的完整路线序列。 这种双端同步推进的方式不仅加快了收敛速度还增加了遇到障碍物绕过的可能性,进而提升了整体的成功率以及最终所得轨迹的质量[^3]。 ```matlab function path = bidirectional_rrt(start, goal, obstacles) % 初始化参数设置 max_iterations = 1000; step_size = 0.5; % 创建两颗RRT树 treeA = initializeTree(start); treeB = initializeTree(goal); for i = 1:max_iterations random_point = getRandomPoint(); % 尝试在treeA上添加random_point new_node_A = extend(treeA, random_point, step_size, obstacles); if isConnected(new_node_A, treeB) break; % 找到连接点,结束循环 end % 同样的逻辑应用于treeB... ... swapTrees(); % 每轮交替处理不同的树 end % 构建完整的路径 path = constructPathFromTwoTrees(treeA, treeB); end ``` 上述伪代码展示了如何在一个简单的二维平面内执行双向RRT搜索流程。实际应用场景可能会涉及到更复杂的三维甚至更高维度的空间变换矩阵运算等问题[^1]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值