手机上运行AI大模型(Deepseek等)

最近deepseek的大火,让大家掀起新一波的本地部署运行大模型的热潮,特别是deepseek有蒸馏的小参数量版本,电脑上就相当方便了,直接ollama+open-webui这种类似的组合就可以轻松地实现,只要硬件,如显存,RAM足够,参数量合适,速度还可以接受。本地部署的意义在于,一是可以数据不上网,让一些私密的数据有所保障,二是可以实现一些在线限制的功能。

在手机上运行的意义,其实更多可能是玩玩,但是,随着LLM技术的发展,已经手机硬件正在赶超PC和服务器,或许在未来,手机上就可以实现电脑上同样的功能。小编收集了几种手机上部署运行的方法,分享给大家。

鸿蒙/安卓/IOS:使用MNN大模型App *** 多模态

有一说一,在大模型开源方面,阿里做得也是很棒地,在deepseek没有火爆之前,它应该是最棒的中国开源大模型公司,deepseek的蒸馏小模型,也用了qwen系列,为中国公司点赞!

安装就比较简单啦,直接下载App,然后下载模型运行即可,所说速度是比ollama要快一些,有阿里自已开发的架构。暂时发现只有安卓的编译好的下载地址:https://meta.alicdn.com/data/mnn/mnn_llm_app_debug_0_1.apk

安卓:MLC-MiniCPM *** 多模态

和下面的一样,但是,这个是国内公司的大模型,下载什么的更方便。MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的系列模型,前段时间曾经有斯坦福大学的人抄袭了这个公司的产品,也是让外国人重新认识了国内的技术水平。

下载地址:https://openbmb.oss-cn-hongkong.aliyuncs.com/model_center/mobile/android/MiniCPM-2.0.apk
## 安卓/IOS:MLCChat *

下载APK: https://ghfast.top/https://github.com/mlc-ai/binary-mlc-llm-libs/releases/download/Android-09262024/mlc-chat.apk

如果下载不成功,网络连接错误,可以先打开https://ghproxy.link/,替换https://ghfast.top/网址为可用的即可。另外从官网看,这个App是直接从抱抱脸官方下载模型的,可能会网络错误,当然国内有镜像站,https://hf-mirror.com/ 不确定如何替换。

IOS: fullmoon **

Fullmoon是一款专为iOS设备设计的应用程序,旨在提供与本地大语言模型进行私密聊天的功能。该应用优化了Apple Silicon,支持在iPhone、iPad和Mac上运行。用户的聊天记录会被本地保存,并且可以自定义应用的外观。Fullmoon利用了Apple的MLX Swift框架,这是一个用于在Apple Silicon上进行机器学习研究的数组框架。该应用支持多种语言模型,包括Llama 3.2 1B、Llama 3.2 3B和DeepSeek-R1-Distill-Qwen-1.5B-4bit。

安卓:termux + ollama * 门槛稍高

安装termux App

Termux 是用于安卓的终端模拟器,安卓6.0以上机型,应用商店搜“Termux”安装即可。手机一般选轻量版1.5b就差不多了(8G RAM),16G RAM的应该可以选大点的。

在termux中安装 Ollama

手机安装好 Termux 后输入 Ollama Termux 一键安装脚本的命令,如下:

先更新

pkg update && pkg upgrade

然后使用一键脚本命令安装ollama

wget https://github.com/Dev-ing-ing/ollama-termux/releases/download/v1.0.0/ollama-installer.sh && bash ollama-installer.sh

部署DeepSeek, 在 Termux 命令启动 Ollama 服务器:

ollama serve

最后,安装 DeepSeek 模型,手机端建议选择 1.5b 模型,输入如下命令:

ollama run deepseek-r1:1.5b

就可以在命令行愉快地玩耍啦!

img

你还知道哪些方法,欢迎分享沟通呀!

参考

  1. https://www.aisharenet.com/fullmoon/
  2. https://github.com/alibaba/MNN/
  3. https://mp.weixin.qq.com/s/EdWJqkRyvXW0Y_QOwcEtlQ
  4. https://mp.weixin.qq.com/s/sK_5oi0yHt48Y0kfmIQVZA
  5. https://github.com/OpenBMB/mlc-MiniCPM/blob/main/README-ZH.md
### DeepSeek大模型本地部署教程 #### 准备工作 为了顺利部署DeepSeek大模型,在开始之前需确认环境满足最低硬件需求并安装必要的软件包。通常建议使用Linux操作系统作为服务器端平台,因为大多数机器学习框架在此类平台上表现最佳。 #### 获取模型文件 通过Kubernetes集群获取`prepare`容器访问权限,并从中下载所需的DeepSeek-V3模型文件[^2]: ```bash kubectl exec -it $( kubectl get pod -n deepseek | awk 'NR>1 {print $1}' | grep prepare ) bash -n deepseek pip install huggingface_hub huggingface-cli download --resume-download deepseek-ai/DeepSeek-V3 --local-dir /model/deepseek-ai/DeepSeek-V3 ``` #### 使用Ollama管理工具进行部署 完成上述准备工作后,可以利用Ollama来简化后续的操作过程。以下是几个常用的Ollama命令用于管理和运行不同版本的DeepSeek-R1模型[^3]: - **查看已安装模型** ```bash ollama list ``` - **拉取指定型号** ```bash ollama pull deepseek-r1:<version> ``` 其中 `<version>` 应替换为实际想要使用的具体版本号(例如 `1.5b`, `7b`, 或者其他可用选项) - **启动特定大小的大模型实例** ```bash ollama run deepseek-r1:7b ``` 这一步骤会加载选定规模的预训练权重到内存中准备提供服务;对于资源有限的情况可以选择较小尺寸如`deepseek-r1:1.5b`. - **停止不再需要的服务实例** ```bash ollama stop <instance_name> ``` - **移除不再需要的模型副本** ```bash ollama rm <model_name>:<version> ``` #### 测试与验证 一旦完成了以上所有设置步骤,则可以通过简单的API请求测试新搭建好的DeepSeek API接口是否正常运作。确保一切按预期功能运转后再投入生产环境使用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值