高等代数(七)-线性变换04:特征值与特征向量

本文深入探讨线性变换中的特征值和特征向量概念,通过定义和几何解释来阐述其重要性。特征向量在变换后保持同一直线方向,而特征值决定了这一方向的缩放。特征向量不唯一,但特征值由向量唯一决定。文章介绍了如何求解特征值和特征向量,并通过示例展示了计算过程。最后,讨论了特征多项式与线性变换的关系,强调了特征多项式对确定变换性质的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§ 4 § 4 §4 特征值与特征向量
我们知道,在有限维线性空间中,取了一组基之后,线性变换就可以用矩阵来表示.
为了利用矩阵来研究线性变换, 对于每个给定的线性变换,
我们希望能找到一组基, 使得它的矩阵具有最简单的形式. 从现在开始,
我们主要讨论,
在适当地选择基之后,一个线性变换的矩阵可以化成什么样的简单形式.
为了这个目的,
先介绍特征值和特征向量的概念,它们对于线性变换的研究具有基本的重要性.
定义 4 设 A A A 是数域 P P P 上线性空间 V V V 的一个线性变换, 如果对于数域 P P P
中一数 λ 0 \lambda_{0} λ0, 存在一个非零向量 ξ \xi ξ, 使得
A ξ = λ 0 ξ , \mathscr{A} \xi=\lambda_{0} \xi, Aξ=λ0ξ,
那么 λ 0 \lambda_{0} λ0 称为 A \mathscr{A} A 的一个特征值, 而 ξ \xi ξ 称为
A \mathscr{A} A 的属于特征值 λ 0 \lambda_{0} λ0 的一个特征向量.
从几何上来看,特征向量的方向经过线性变换后, 保持在同一条直线上,
这时或者方向不变 ( λ 0 > 0 ) \left(\lambda_{0}>0\right) (λ0>0), 或者方向相反
( λ 0 < 0 ) \left(\lambda_{0}<0\right) (λ0<0), 至于 λ 0 = 0 \lambda_{0}=0 λ0=0
时,特征向量就被线性变换变成 0 \mathbf{0} 0.
如果 ξ \boldsymbol{\xi} ξ 是线性变换 A \mathcal{A} A 的属于特征值
λ 0 \lambda_{0} λ0 的特征向量,那么 ξ \boldsymbol{\xi} ξ 的任何一个非零倍数
k ξ k \xi kξ 也是 A \mathscr{A} A 的属于 λ 0 \lambda_{0} λ0 的特征向量. 因为从 (1)
式可以推出
A ( k ξ ) = λ 0 ( k ξ ) .  \mathscr{A}(k \xi)=\lambda_{0}(k \xi) \text {. } A(kξ)=λ0(kξ)
这说明特征向量不是被特征值所唯一决定的.
相反,特征值却是被特征向量所唯一决定的,因为,一个特征向量只能属于一个特征值.
现在来给出寻找特征值和特征向量的方法. 设 V V V 是数域 P P P n n n
维线性空间, ε 1 \varepsilon_{1} ε1,
ε 2 , ⋯   , ε n \varepsilon_{2}, \cdots, \varepsilon_{n} ε2,,εn 是它的一组基,线性变换
A \mathcal{A} A 在这组基下的矩阵是 A A A. 设 λ 0 \lambda_{0} λ0 是特征值,
它的一个外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“522px”}
A ( x 01 x 02 ⋮ x 0 n ) . A\left(\begin{array}{c} x_{01} \\ x_{02} \\ \vdots \\ x_{0 n} \end{array}\right) . A x01x02x0n .
λ 0 ξ \lambda_{0} \xi λ0ξ 的坐标是
λ 0 ( x 01 x 02 ⋮ x 0 n ) \lambda_{0}\left(\begin{array}{c} x_{01} \\ x_{02} \\ \vdots \\ x_{0 n} \end{array}\right) λ0 x01x02x0n
因此(1)式相当于坐标之间的等式
A ( x 01 x 02 ⋮ x 0 n ) = λ 0 ( x 01 x 02 ⋮ x 0 n ) \boldsymbol{A}\left(\begin{array}{c} x_{01} \\ x_{02} \\ \vdots \\ x_{0 n} \end{array}\right)=\lambda_{0}\left(\begin{array}{c} x_{01} \\ x_{02} \\ \vdots \\ x_{0 n} \end{array}\right) A x01x02x0n =λ0 x01x02x0n

( λ 0 E − A ) ( x 01 x 02 ⋮ x 0 n ) = 0. \left(\lambda_{0} \boldsymbol{E}-\boldsymbol{A}\right)\left(\begin{array}{c} x_{01} \\ x_{02} \\ \vdots \\ x_{0 n} \end{array}\right)=\mathbf{0} . (λ0EA) x01x02x0n =0.
这说明特征向量 ξ \xi ξ 的坐标
( x 01 , x 02 , ⋯   , x 0 n ) \left(x_{01}, x_{02}, \cdots, x_{0 n}\right) (x01,x02,,x0n) 满足齐次方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = λ 0 x 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = λ 0 x 2 , ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = λ 0 x n , \left\{\begin{array}{c} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=\lambda_{0} x_{1}, \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=\lambda_{0} x_{2}, \\ \cdots \cdots \cdots \cdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=\lambda_{0} x_{n}, \end{array}\right. a11x1+a12x2++a1nxn=λ0x1,a21x1+a22x2++a2nxn=λ0x2,⋯⋯⋯⋯an1x1+an2x2++annxn=λ0xn,

{ ( λ 0 − a 11 ) x 1 − a 12 x 2 − ⋯ − a 1 n x n = 0 , − a 21 x 1 + ( λ 0 − a 22 ) x 2 − ⋯ − a 2 n x n = 0 , ⋯ ⋯ ⋯ ⋯ ⋯ + ( λ 0 − a n n ) x n = 0. − a n 1 x 1 − a n 2 x 2 − ⋯ + \left\{\begin{array}{c} \left(\lambda_{0}-a_{11}\right) x_{1}-a_{12} x_{2}-\cdots-a_{1 n} x_{n}=0, \\ -a_{21} x_{1}+\left(\lambda_{0}-a_{22}\right) x_{2}-\cdots-a_{2 n} x_{n}=0, \\ \cdots \cdots \cdots \cdots \cdots+\left(\lambda_{0}-a_{n n}\right) x_{n}=0 . \\ -a_{n 1} x_{1}-a_{n 2} x_{2}-\cdots+ \end{array}\right. (λ0a11)x1a12x2a1nxn=0,a21x1+(λ0a22)x2a2nxn=0,⋯⋯⋯⋯⋯+(λ0ann)xn=0.an1x1an2x2+
由于 ξ ≠ 0 \xi \neq 0 ξ=0, 所以它的坐标 x 01 , x 02 , ⋯   , x 0 μ x_{01}, x_{02}, \cdots, x_{0 \mu} x01,x02,,x0μ
不全为零, 即齐次方程组有非零解. 我们知道,齐次线性方程组 (3)
有非零解的充分必要条件是它的系数行列式为零,即
∣ λ 0 E − A ∣ = ∣ λ 0 − a 11 − a 12 ⋯ − a 1 n − a 21 λ 0 − a 22 ⋯ − a 2 n ⋮ ⋮ ⋮ − a n 1 − a n 2 ⋯ λ 0 − a n n ∣ = 0. \left|\lambda_{0} \boldsymbol{E}-\boldsymbol{A}\right|=\left|\begin{array}{cccc} \lambda_{0}-a_{11} & -a_{12} & \cdots & -a_{1 n} \\ -a_{21} & \lambda_{0}-a_{22} & \cdots & -a_{2 n} \\ \vdots & \vdots & & \vdots \\ -a_{n 1} & -a_{n 2} & \cdots & \lambda_{0}-a_{n n} \end{array}\right|=0 . λ0EA= λ0a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值