具身智能基础——模仿学习基础
原创 木木JS 求知AI 2024年11月19日 17:29 广西
⇧点蓝色字关注“求知AI”
逆强化学习
逆强化学习(Inverse Reinforcement Learning, IRL)的数学公式可以理解为从专家的演示中推断出奖励函数,然后利用这个奖励函数去训练一个强化学习智能体。这与标准的强化学习不同,因为在标准的强化学习中,奖励函数是已知的,而在逆强化学习中,奖励函数是未知的,需要从专家行为中学习出来。
逆强化学习(Inverse Reinforcement Learning, IRL)是一种学习策略,它的核心目标是从专家的演示(即专家的行为轨迹)中推断出一个奖励函数,用来解释专家的决策动机。与标准的强化学习不同,标准强化学习假设奖励函数已知,通过最大化奖励来学习策略,而逆强化学习假设奖励函数未知,需要通过观察专家的行为来进行推断。换句话说,逆强化学习通过分析专家的行为轨迹,推测其背后的“奖励”机制,从而在没有直接提供的奖励函数的情况下模仿专家的策略。下面我们详细解释逆强化学习中的核心概念和公式。
1. 专家的轨迹(Expert Trajectories, τ)
数学表示:专家轨迹公式: τ=(s1,a1,s2,a2,...,sT,aT)
含义: 专家轨迹是指在一个任务执行过程中,由专家(如人类或高性能智能体)所记录的一系列状态和动作的序列。这些轨迹描述了专家在完成任务时如何在不同情境下选择特定行为。专家轨迹通常包含一系列的状态和动作对,可以看作是专家解决任务时的“行动日志”。这些轨迹不仅记录了专家的操作步骤,还暗含了专家在执行任务过程中所遵循的隐性规则。
类比: 假设你在观察一位驾驶员开车,专家轨迹就是你记录下来的所有他曾经处在的状态(如路况、车速等)以及他采取的相应动作(如转向、加速、刹车等)。每一个动作的选择,都是基于他对当时状态的理解,从而反映出他的驾驶经验和技巧。这一轨迹记录了他如何处理各种路况和突发情况,从而可以帮助我们分析和模仿他的一些驾驶策略。
2. 策略(Policy, π)
数学表示:策略公式: π(s)→a
含义: 策略是描述在每个状态下应该选择哪种动作的规则。具体来说,策略定义了在每一个状态中选择某个动作的概率分布。在逆强化学习中,策略是通过观察专家行为而推测出的,即通过对专家轨迹的分析,来还原出专家在每个状态下可能会采取的行为偏好。策略可以是一个确定的动作决策(确定性策略),也可以是每个可能动作的概率分布(随机策略),以此反映出专家如何在不同情境下选择行动。
类比: 假设你在观察一个驾驶员的行为,如果你经常看到他在某种交通状况下减速,你就可以推测他在这种情况下的策略是“减速”。即便这种策略并未明确告知你,但通过足够多的观察和分析,你就能归纳出专家行为的规律,并理解在不同情况下,他会更倾向于选择哪种驾驶方式。
3. 奖励函数(Reward Function, r(s,a))
数学表示:奖励函数公式: r(s,a)
含义: 奖励函数是逆强化学习中的核心概念之一,它是用来衡量专家在每个状态下做出某个动作时的即时收益或好处。我们可以认为,专家的行为是为了最大化这个未知的奖励函数而设计的。奖励函数帮助我们理解,专家在每种状态下选择某一动作背后的动机或目标。通过还原奖励函数,我们试图找到能够解释专家为何选择这些特定行为的潜在“动因”。
类比: 奖励函数就像是在解谜。假设你观察一位驾驶员的行为,他可能会在车速很快的情况下保持更大的车距,而在车速较慢时保持较小的车距。通过这些行为,你可以推测出他的目标可能是“安全驾驶”或“顺利抵达目的地”,即奖励函数的某种形式。我们可以通过反推,找出符合他行为的动机,从而解释他为何在每个状态下选择这些动作。
4. 累积奖励(Cumulative Reward, R(τ))
数学表示:累积奖励公式: R(τ)=∑t=1Tr(st,at)
含义: 累积奖励是指专家在整个轨迹中所获得的总奖励。累积奖励的计算方法是将轨迹中每一步的即时奖励相加,形成一个整体的收益值。对于逆强化学习任务,我们的目标是找到一个奖励函数,使得专家的行为看起来像是在最大化这个累积奖励。累积奖励的高低反映了轨迹的优劣,因此,合理的奖励函数应该能够产生类似专家轨迹的高质量行为。
类比: 假设你观察驾驶员的行为,他可能在驾驶过程中权衡了“安全”与“快速”,最终在两者之间找到了某种平衡。这一平衡便是他在整个驾驶过程中所获得的累积奖励。我们希望通过观察他的行为,推导出一种奖励机制,使得他选择的动作序列可以得到这一总奖励。
5. 逆强化学习的目标:找到奖励函数 r(s,a)
数学表示:逆强化学习目标公式: maxr∑τ∼πER(τ)−∑τ∼πR(τ)
含义: 逆强化学习的核心目标是找到一个奖励函数,使得基于该奖励函数的策略能够最大程度地复现专家的行为。我们希望能够找到一个奖励函数,使得专家轨迹在该函数下的累积奖励明显高于其他非专家轨迹的累积奖励。换句话说,我们试图通过优化专家行为的轨迹,找到能解释其行为的奖励函数,使得专家的策略看似是在最大化这一奖励函数的总体值。
类比: 假设你想找到一个专家驾驶员在某种情况下减速的“动机”,你可以尝试定义不同的奖励目标(例如“安全”、“效率”等)并对比每个目标的效果。当你发现某种奖励函数可以最合理地解释他在各种状态下的行为选择时,那么这个奖励函数可能就是他在实际驾驶中遵循的“动机”。
6. 优化问题
数学表示:优化问题公式: maxrEπE[R(τ)]−Eπ[R(τ)]
含义: 在逆强化学习的优化过程中,核心任务是找到一个奖励函数,使得专家策略在该奖励函数下产生的累积奖励超过其他非专家策略的累积奖励。具体来说,这种优化常通过最大化专家策略轨迹的预期累积奖励与非专家策略轨迹的预期累积奖励之差来实现。优化的本质在于使专家的累积奖励最大化,从而接近于专家所展示的最优行为。
类比: 假设你观察到一个人经常在行人较多的路段减速,而在空旷的路段加速。你可以通过调整不同的奖励函数来猜测他的“动机”,并最终找到最符合他行为的奖励函数。这个过程就是通过优化来找到最合适的奖励函数,以解释专家的行为决策。
7. 软Q学习形式
数学表示:软Q学习公式: Q∗(s,a)=r(s,a)+γEs′∼P(⋅∣s,a)[V(s′)]
含义: 在一些逆强化学习方法中,奖励函数会以特定形式表达。例如在软Q学习中,奖励函数结合了动作选择的概率分布,以鼓励智能体探索更广阔的状态空间。这种方法通过引入熵来鼓励多样性和广度,使得智能体可以在不同状态下探索更多的选择,避免过早陷入局部最优解。
类比: 假设你是一个观察驾驶员行为的分析员。软Q学习就像是一个权衡策略:除了即时的反馈,还考虑未来的潜在收益。例如驾驶员在当前路况下的加速或减速,不仅考虑当前的安全性,还会考虑到接下来路况可能变化带来的影响。这种方式帮助他综合考量每个动作的长远影响,从而更接近于专家的选择。
总结
逆强化学习的核心在于,通过观察专家的行为轨迹来推断出一个隐含的奖励函数,解释专家为何会在不同状态下选择特定动作。我们假设专家的每一个决策都是为了最大化某种未知的奖励。逆强化学习通过构建和优化这个奖励函数,使得我们推导出的策略能够逼近专家的行为模式。
首先,我们需要记录专家的轨迹,这是专家在完成任务时所经过的一系列状态和对应的动作序列。逆强化学习的目标是找到一个奖励函数,使得在这个函数下,专家的轨迹能获得更高的累积奖励。换句话说,专家的行为轨迹可以看作是对这一奖励函数的隐性优化,因此通过还原出这个函数,我们可以理解专家在各状态下的动机和目标。
在优化的过程中,我们通过最大化专家行为轨迹的累积奖励来找到最符合专家决策模式的奖励函数。这样一来,基于该奖励函数的策略便能合理复现专家的行为,甚至在未见过的状态下也能够做出合理的推断。因此,逆强化学习不仅帮助我们模仿专家的动作序列,更解答了“专家为何选择这些动作”这一核心问题。
最终,逆强化学习通过还原奖励函数,生成出一种具备泛化能力的策略,使得智能体可以在不同状态下模仿甚至超越专家的决策风格,实现对复杂任务的有效应对。这一过程不仅是对专家行为的再现,更是对专家行为背后逻辑和动机的深刻理解。
生成对抗模仿学习
生成对抗模仿学习(Generative Adversarial Imitation Learning, GAIL)是一种模仿学习的高级方法,它融合了生成对抗网络(GAN)的思想,用于从专家示例数据中学习出一个智能体的策略。GAIL 的目的是在没有明确奖励函数的情况下,使智能体能够通过模仿学习与专家表现出相似的行为。这种方法通过对抗训练的机制,使得智能体的行为逐步逼近专家的行为轨迹,能够有效应对许多复杂环境。
GAIL 的核心思想
GAIL 通过生成对抗网络(GAN)的基本结构实现模仿学习。该方法引入了两个重要的组件:生成器(generator)和判别器(discriminator),二者在对抗性训练过程中相互作用。具体来说:
• 生成器(Generator):在 GAIL 框架中,生成器充当智能体的策略,生成一系列动作或轨迹,尝试让这些轨迹尽可能接近专家的行为。这一过程模拟了 GAN 中生成器的作用,即生成数据来“欺骗”判别器,使其认为生成的数据与真实数据难以区分。
• 判别器(Discriminator):判别器的任务是区分专家的轨迹与智能体生成的轨迹。它通过学习判断给定的状态和动作对是否源自专家(真实数据)还是来自生成器生成的数据,从而为生成器提供反馈,帮助智能体不断调整行为以接近专家轨迹。
GAIL 的训练目标是使生成器生成的轨迹能够“骗过”判别器,使得判别器难以分辨生成轨迹与专家演示的轨迹。正如在 GAN 中,生成器生成的图像试图骗过判别器使其认为这些图像是真实的,GAIL 中的生成器生成的轨迹则试图让判别器判断其为专家轨迹。
GAIL 的工作原理
GAIL 的工作流程包括以下步骤:
1.输入专家轨迹数据:GAIL 首先从专家演示中获得一系列状态和动作对,形成专家轨迹 τE,即专家在不同状态下采取的决策序列。
2.初始化策略(生成器):智能体最初使用随机初始化的策略生成动作和轨迹,记为 τπ,在环境中采取动作并生成新的轨迹。
3.更新判别器:判别器接收来自专家的轨迹 τE 和生成器生成的轨迹 τπ\tau_{\pi}τπ,并试图分辨出这两类轨迹的不同。通过判别器的反馈,智能体的生成器可以获知哪些轨迹更接近专家的行为,哪些轨迹不符合专家风格。
4.优化生成器:生成器即智能体的策略,在接收到判别器反馈后调整其行为生成方式,使生成的轨迹逐步接近专家的轨迹。随着训练的不断进行,生成器的策略逐渐逼近专家的策略。
5.重复迭代:整个过程循环进行,生成器和判别器在不断的对抗训练中得到优化,直至生成器的轨迹在判别器看来与专家轨迹难以区分为止。此时,智能体的策略已经能够较好地模仿专家的行为。
GAIL 的目标函数
GAIL 的目标函数与 GAN 类似,但进行了适应性的调整。GAIL 通过最小化专家轨迹和智能体轨迹在“状态-动作占用度量”上的差异来优化策略。其目标函数如下:
minπmaxDEτπ[log(D(s,a))]+EτE[log(1−D(s,a))]
其中:
• D(s,a) 是判别器,输出一个概率值,表示给定的状态 - 动作对 (s,a)是来自专家轨迹还是生成轨迹。
• τπ表示由智能体策略生成的轨迹。
• τE 表示专家轨迹。
在该目标函数中:
• 判别器 DDD 试图最大化正确区分专家轨迹和智能体轨迹的概率。
• 生成器(即策略 π)试图最小化判别器的判别能力,即让判别器无法区分其生成的轨迹和专家轨迹,从而逼近专家的行为模式。
GAIL 与传统模仿学习的区别
1.无须明确奖励函数:在传统的强化学习中,智能体通过最大化已知的奖励函数进行学习,而在 GAIL 中,奖励函数并不明确。智能体通过判别器的反馈进行间接学习,而不需要事先定义奖励函数,这使得 GAIL 更加灵活。
2.对抗性训练:GAIL 采用了 GAN 的对抗性训练思想。传统的模仿学习方法如行为克隆(Behavior Cloning, BC)是直接从专家数据中学习,而 GAIL 则是通过生成器和判别器的对抗方式,逐步优化智能体的策略,使其逼近专家的策略,进而具备更强的泛化能力。
GAIL 的优点
1.灵活性强:GAIL 无需设计具体的奖励函数,使得它可以应用于那些难以定义明确奖励的复杂任务中。
2.较强的泛化能力:与行为克隆相比,GAIL 不易受到专家数据分布偏移的影响。通过对抗训练更新策略,GAIL 能在专家演示未覆盖的状态空间中更好地表现。
3.适合复杂任务:在机器人操作或自动驾驶等领域,定义精确的奖励函数可能非常困难,而 GAIL 通过对抗性训练有效地解决了这一问题,使其在这些领域得到广泛应用。
总结
生成对抗模仿学习(GAIL)是一种基于对抗性训练的模仿学习方法,通过生成器和判别器的相互作用来逐步逼近专家行为,而无需显式定义奖励函数。GAIL 在处理复杂任务方面展现出强大的应用潜力,如机器人操作、自动驾驶等,通过模仿专家的行为来实现高效的策略学习。相比传统的模仿学习方法,GAIL 具备更高的灵活性和泛化能力,解决了传统方法中的许多局限性,是模仿学习领域的一项重要技术创新。
END