1 最大子段和
给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时,定义子段和为0。
要求算法的时间复杂度为O(n)。
输入格式:
输入有两行:
第一行是n值(1<=n<=10000);
第二行是n个整数。
输出格式:
输出最大子段和。
输入样例:
在这里给出一组输入。例如:
6
-2 11 -4 13 -5 -2
输出样例:
在这里给出相应的输出。例如:
20
#include<iostream>
using namespace std;
int main(){
int n,bests=0,sum=0;
cin >> n;
for(int i=1;i<=n;i++){
int s;
cin >> s;
sum += s;
if(sum > bests)
bests =sum;
if(sum < 0)
sum = 0;
}
cout << bests << endl;
return 0;
}
2 0-1背包
给定n(n<=100)种物品和一个背包。物品i的重量是wi,价值为vi,背包的容量为C(C<=1000)。问:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有两个选择:装入或不装入。不能将物品i装入多次,也不能只装入部分物品i。
输入格式:
共有n+1行输入: 第一行为n值和c值,表示n件物品和背包容量c; 接下来的n行,每行有两个数据,分别表示第i(1≤i≤n)件物品的重量和价值。
输出格式:
输出装入背包中物品的最大总价值。
输入样例:
在这里给出一组输入。例如:
5 10
2 6
2 3
6 5
5 4
4 6
输出样例:
在这里给出相应的输出。例如:
15
#include<iostream>
using namespace std;
int n,c,w[105],v[105],dp[105][1005],x[105]={0};
int i,j;
void bag(){
for(j=0;j<=c;j++)
if(j<w[n])
dp[n][j]=0;
else
dp[n][j]=v[n];
for(i=n-1;i>=1;i--)
for(j=0;j<=c;j++)
if(j>=w[i]&&dp[i+1][j]<dp[i+1][j-w[i]]+v[i])
dp[i][j]=dp[i+1][j-w[i]]+v[i];
else
dp[i][j]=dp[i+1][j];
}
void print(){
int cv;
j=c;
for(cv=0,i=1;i<=n-1;i++){
if(dp[i][j]!=dp[i+1][j]){
x[i]=1;
j=j-w[i];
cv=cv+v[i];
}
}
if(dp[1][c]>=cv){
x[n]=1;
j=j-w[n];
}
cout << dp[1][c];
}
int main(){
cin >> n >> c;
for(i = 1; i <= n; i++){
cin >> w[i] >> v[i];
}
bag();
print();
return 0;
}
3 回文串问题
一个字符串,如果从左到右读和从右到左读是完全一样的,比如"aba",我们称其为回文串。现在给你一个字符串,可在任意位置添加字符,求最少添加几个字符,才能使其变成一个回文串。
输入格式:
任意给定的一个字符串,其长度不超过1000.
输出格式:
能变成回文串所需添加的最少字符数。
输入样例:
在这里给出一组输入。例如:
Ab3bd
Abb
输出样例:
在这里给出相应的输出。例如:
2
1
#include<iostream>
#include<cstring>
using namespace std;
int dp[1005][1005];
int main(){
char ch1[1005];
char ch2[1005];
string s;
while(cin >> s){
int len = s.length();
for(int i=0;i<len;i++){
ch1[i] = s[i];
ch2[i] = s[len-i-1];
}
for(int i=1;i<=len;i++){
for(int j=1;j<=len;j++){
if(ch1[i-1] == ch2[j-1])
dp[i][j] = dp[i-1][j-1] + 1;
else{
if(dp[i-1][j] > dp[i][j-1])
dp[i][j] = dp[i-1][j];
else
dp[i][j] = dp[i][j-1];
}
}
}
int min = len - dp[len][len];
cout << min << endl;
}
return 0;
}
4 矩阵链相乘问题
输入样例:
在这里给出一组输入。例如:
5
30 35 15 5 10 20
输出样例:
在这里给出相应的输出。例如:
11875
#include <iostream>
using namespace std;
#define N 1000
int p[N];
int m[N][N];
int n;
int maxChain(){
for(int i = 1; i <= n; i++)
m[i][i] = 0;
for(int i = n; i >= 1; i--){
for(int j = i+1; j <= n; j++){
m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];
for(int k = i + 1; k < j; k++){
int tmp = m[i][k] +m[k+1][j] + p[i-1]*p[k]*p[j];
if(tmp < m[i][j])
m[i][j] = tmp;
}
}
}
return m[1][n];
}
int main(){
cin>>n;
for(int i=0; i < n+1; i++)
cin>>p[i];
cout<<maxChain()<<endl;
}
5 寻宝
小明有一张藏宝图,上面有m*n个房间,每个房间里面都有一个有一定价值的宝物,小明只能从左上角的房间进入收集宝物,且每次只能向右边或向下边的房间继续寻宝,最终只能从最右下的房间出来。请你帮小明计算下他最多可以收集到多少价值的宝物?
输入格式:
输入第一行给出两个正整数m,n(1=<m,n<=2000),随后给出m行数据,每行都包括n个正整数,中间用空格分割。
输出格式:
输出收集到的最大价值v,题目保证v<10^9。
输入样例:
4 4
1 18 9 3
7 10 6 12
5 13 4 15
2 11 8 16
输出样例:
78
#include<iostream>
using namespace std;
int dp[2005][2005];
int main(){
int m,n;
cin >> m >> n;
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
cin >> dp[i][j];
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++){
if(dp[i-1][j] > dp[i][j-1])
dp[i][j] = dp[i-1][j] + dp[i][j];
else
dp[i][j] = dp[i][j-1] + dp[i][j];
}
cout << dp[m][n];
return 0;
}