算法_动态规划

1 最大子段和

给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时,定义子段和为0。

要求算法的时间复杂度为O(n)。

输入格式:
输入有两行:

第一行是n值(1<=n<=10000);

第二行是n个整数。

输出格式:
输出最大子段和。

输入样例:
在这里给出一组输入。例如:

6
-2 11 -4 13 -5 -2

输出样例:
在这里给出相应的输出。例如:

20
#include<iostream>
using namespace std;
int main(){
    int n,bests=0,sum=0;
    cin >> n;
    for(int i=1;i<=n;i++){
        int s;
        cin >> s;
        sum += s;
        if(sum > bests)
            bests =sum;
        if(sum < 0)
            sum = 0;
    }
    cout << bests << endl;
    return 0;
}

2 0-1背包

给定n(n<=100)种物品和一个背包。物品i的重量是wi,价值为vi,背包的容量为C(C<=1000)。问:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有两个选择:装入或不装入。不能将物品i装入多次,也不能只装入部分物品i。

输入格式:
共有n+1行输入: 第一行为n值和c值,表示n件物品和背包容量c; 接下来的n行,每行有两个数据,分别表示第i(1≤i≤n)件物品的重量和价值。

输出格式:
输出装入背包中物品的最大总价值。

输入样例:
在这里给出一组输入。例如:

5 10
2 6
2 3
6 5
5 4
4 6

输出样例:
在这里给出相应的输出。例如:

15
#include<iostream>
using namespace std;
int n,c,w[105],v[105],dp[105][1005],x[105]={0};
int i,j;
void bag(){
    for(j=0;j<=c;j++)
        if(j<w[n])
            dp[n][j]=0;
        else
            dp[n][j]=v[n];
    for(i=n-1;i>=1;i--)
        for(j=0;j<=c;j++)
            if(j>=w[i]&&dp[i+1][j]<dp[i+1][j-w[i]]+v[i])
                dp[i][j]=dp[i+1][j-w[i]]+v[i];
            else
                dp[i][j]=dp[i+1][j];

}
void print(){
    int cv;
    j=c;
    for(cv=0,i=1;i<=n-1;i++){
        if(dp[i][j]!=dp[i+1][j]){
            x[i]=1;
            j=j-w[i];
            cv=cv+v[i];
        }
    }
    if(dp[1][c]>=cv){
        x[n]=1;
        j=j-w[n];
    }
    cout << dp[1][c];
}
int main(){
    cin >> n >> c;
    for(i = 1; i <= n;  i++){
        cin >> w[i] >> v[i];
    }
    bag();
    print();
    return 0;
}

3 回文串问题

一个字符串,如果从左到右读和从右到左读是完全一样的,比如"aba",我们称其为回文串。现在给你一个字符串,可在任意位置添加字符,求最少添加几个字符,才能使其变成一个回文串。

输入格式:
任意给定的一个字符串,其长度不超过1000.

输出格式:
能变成回文串所需添加的最少字符数。

输入样例:
在这里给出一组输入。例如:

Ab3bd
Abb

输出样例:
在这里给出相应的输出。例如:

2
1
#include<iostream>
#include<cstring>
using namespace std;
int dp[1005][1005];
int main(){
    char ch1[1005]; 
    char ch2[1005];
    string s;
    while(cin >> s){
        int len = s.length();
        for(int i=0;i<len;i++){
            ch1[i] = s[i];
            ch2[i] = s[len-i-1];
        }
        for(int i=1;i<=len;i++){
            for(int j=1;j<=len;j++){
                if(ch1[i-1] == ch2[j-1])
                    dp[i][j] = dp[i-1][j-1] + 1;
                else{
                    if(dp[i-1][j] > dp[i][j-1])
                        dp[i][j] = dp[i-1][j];
                    else
                        dp[i][j] = dp[i][j-1];
                }
            }
        }
        int min = len - dp[len][len];
        cout << min << endl;
    }
    return 0;
}

4 矩阵链相乘问题

在这里插入图片描述
输入样例:
在这里给出一组输入。例如:

5
30 35 15 5 10 20

输出样例:
在这里给出相应的输出。例如:

11875
#include <iostream>
using namespace std;

#define N 1000
int p[N];
int m[N][N];
int n;

int maxChain(){
    for(int i = 1; i <= n; i++)
         m[i][i] = 0;
    for(int i = n; i >= 1; i--){
    	for(int j = i+1; j <= n; j++){
		    m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];
            for(int k = i + 1; k < j; k++){
                int tmp = m[i][k] +m[k+1][j] + p[i-1]*p[k]*p[j];
                if(tmp < m[i][j])
                   m[i][j] = tmp;
            }	
		}
    }
    return m[1][n];
}

int main(){
    cin>>n;
    for(int i=0; i < n+1; i++)
        cin>>p[i];
    cout<<maxChain()<<endl;
}

5 寻宝

小明有一张藏宝图,上面有m*n个房间,每个房间里面都有一个有一定价值的宝物,小明只能从左上角的房间进入收集宝物,且每次只能向右边或向下边的房间继续寻宝,最终只能从最右下的房间出来。请你帮小明计算下他最多可以收集到多少价值的宝物?

输入格式:
输入第一行给出两个正整数m,n(1=<m,n<=2000),随后给出m行数据,每行都包括n个正整数,中间用空格分割。

输出格式:
输出收集到的最大价值v,题目保证v<10^9。

输入样例:

4 4
1 18 9 3
7 10 6 12
5 13 4 15
2 11 8 16

输出样例:

78
#include<iostream>
using namespace std;
int dp[2005][2005];
int main(){
    int m,n;
    cin >> m >> n;
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
            cin >> dp[i][j];
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++){
            if(dp[i-1][j] > dp[i][j-1])
                dp[i][j] = dp[i-1][j] + dp[i][j];
            else
                dp[i][j] = dp[i][j-1] + dp[i][j];
        }
    cout << dp[m][n];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玳宸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值