1、查看GPU块数
nvidia-smi
2、实时监控GPU使用
watch -n 5 nvidia-smi
5是每隔5s更新一次
3、指定GPU运行
1、直接在终端运行时加入相关语句实现指定GPU的使用
CUDA_VISIBLE_DEVICES=0 python test.py
# 表示运行test.py文件时,使用编号为0的GPU卡
CUDA_VISIBLE_DEVICES=0,2 python test.py
# 表示运行test.py文件时,使用编号为0和2的GPU卡
2、在Python程序中添加 import os # 使用第一张与第三张GPU
os.environ[“CUDA_VISIBLE_DEVICES”] = “0, 2”
4、在服务器使用TensorBoard
在Windows系统装一个Xshell,在文件->属性->ssh->隧道->添加,类型local,源主机填127.0.0.1 / localhost(意思是本机),端口设置一个,比如12345,目标主机为服务器,目标端口一般是6006,如果6006被占了可以改为其他端口。
在服务器上运行 tensorboard --logdir=‘logs’ --port=6006
在本机打开网页localhost:12345 ,即可查看远程的tensorboard。