使用实验室服务器问题记录(长期更新)

1、查看GPU块数

nvidia-smi

2、实时监控GPU使用

watch -n 5 nvidia-smi
5是每隔5s更新一次

3、指定GPU运行

1、直接在终端运行时加入相关语句实现指定GPU的使用
CUDA_VISIBLE_DEVICES=0 python test.py
# 表示运行test.py文件时,使用编号为0的GPU卡
CUDA_VISIBLE_DEVICES=0,2 python test.py
# 表示运行test.py文件时,使用编号为0和2的GPU卡

2、在Python程序中添加 import os # 使用第一张与第三张GPU
os.environ[“CUDA_VISIBLE_DEVICES”] = “0, 2”

4、在服务器使用TensorBoard

在Windows系统装一个Xshell,在文件->属性->ssh->隧道->添加,类型local,源主机填127.0.0.1 / localhost(意思是本机),端口设置一个,比如12345,目标主机为服务器,目标端口一般是6006,如果6006被占了可以改为其他端口。
在服务器上运行 tensorboard --logdir=‘logs’ --port=6006
在本机打开网页localhost:12345 ,即可查看远程的tensorboard。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玳宸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值