PCL_最小二乘法点云平滑

不规则数据直接进行曲面重建会造成曲面不光滑或者漏洞,在不能进行额外扫描的情况下,可以通过数据重采样解决这一问题,重采样算法通过对周围数据点进行高阶多项式插值来重建表面缺失部分,也可以用来解决由多个扫描点造成“双墙”伪数据问题。
代码:

#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/surface/mls.h>
int
main(int argc, char** argv)
{// 将一个适当类型的输入文件加载到对象PointCloud中
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>());
	// 加载bun0.pcd文件,加载的文件在 PCL的测试数据中是存在的 
	pcl::io::loadPCDFile("bun0.pcd", *cloud);
	// 创建一个KD树
	pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
	// 输出文件中有PointNormal类型,用来存储移动最小二乘法算出的法线
	pcl::PointCloud<pcl::PointNormal> mls_points;
	// 定义对象 (第二种定义类型是为了存储法线, 即使用不到也需要定义出来)
	pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;
	mls.setComputeNormals(true);
	//设置参数
	mls.setInputCloud(cloud);
	mls.setPolynomialFit(true);
	mls.setSearchMethod(tree);
	mls.setSearchRadius(0.03);
	// 曲面重建
	mls.process(mls_points);
	// 保存结果
	pcl::io::savePCDFile("bun0-mls.pcd", mls_points);
}

在C++的点云库(PCL)中,最小二乘法是一种常用的数学方法,用于拟合直线。在处理点云数据时,这可以帮助我们找到最佳的直线拟合,即使数据中存在噪声。具体来说,最小二乘法拟合直线是通过最小化所有点到拟合直线的距离的平方和来实现的。 以下是使用PCL进行最小二乘法直线拟合的基本步骤: 1. 确保已经安装了PCL库,并在项目中正确引入了必要的PCL头文件。 2. 创建一个点云对象,并填充数据点。 3. 使用`pcl::SampleConsensusInitialAlignment`(SAC-IA)或者`pcl::ModelFitting`模块进行直线拟合。这些方法可以基于随机抽样一致性(RANSAC)算法来实现稳健的拟合。 4. 设置SAC-IA的参数,包括要拟合的模型类型(在这个例子中是直线),以及任何其他特定于模型的参数。 5. 运行拟合算法,这通常涉及到对点云进行多次采样和拟合,以找到最佳拟合直线。 6. 获取拟合结果,这通常包括拟合直线的参数,例如方向向量和一个点。 示例代码片段可能如下所示: ```cpp #include <pcl/point_types.h> #include <pcl/sample_consensus_methods.h> #include <pcl/segmentation/sac_segmentation.h> #include <pcl/segmentation/model_fitting.h> // 假设已经填充了点云对象 cloud // 创建直线模型拟合对象 pcl::SampleConsensusInitialAlignment<pcl::PointXYZ, pcl::PointXYZ, pcl::ModelCoefficients> sac_ia; sac_ia.setInputCloud(cloud.makeShared()); sac_ia.setModelType(pcl::SACMODEL_LINE); sac_ia.setMethodType(pcl::SAC_RANSAC); // 设置SAC-IA的参数 sac_ia.setMaxIterations(1000); sac_ia.setDistanceThreshold(0.01); sac_ia.setAxisEpsilon(0.01); sac_ia.setEpsAngle(5.0 * (M_PI / 180.0)); // 运行拟合 pcl::PointCloud<pcl::PointXYZ>::Ptr final(new pcl::PointCloud<pcl::PointXYZ>); sac_ia.align(*final); if (sac_ia.hasConverged()) { // 输出拟合直线的参数 std::cout << "Model coefficients: " << sac_ia.getModelCoefficients() << std::endl; } ``` 请注意,实际使用时,你可能需要根据你的具体需求调整代码和参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值