PCL 点云表面重建之曲面平滑(Mobile Least Square, MLS)

本文介绍了PCL库中移动最小二乘法(MLS)用于点云表面重建和表面平滑的方法。MLS通过局部加权平均减少噪声并估计法线方向。核心步骤包括以每个点为中心的局部平面拟合,适用于点云数据的连续化处理。文章提供代码示例和结果展示,要求PCL版本大于1.6。
摘要由CSDN通过智能技术生成

一、介绍

1.1 MLS介绍

  移动最小二乘法(Mobile Least Square, MLS)是一种用于曲面重建或形变的方法。它通过对曲面进行局部加权平均来减小噪声和估计曲面上的法线方向。
  MLS方法的基本思想: 以每个点为中心取一定半径内的邻域点,然后通过最小二乘法拟合一个局部平面或曲面,并将原始点的坐标映射到该平面或曲面上。这样可以将离散的点云数据转换为连续的曲面表示,从而可以进行进一步的分析和处理。

1.2 核心步骤

如果不需要法线估计,则可以跳过此步骤。

  mls.setComputeNormals (true);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶探索站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值