yolov8涨点系列之轻量化主干网络替换

文章目录

    • YOLOv8 替换成efficientvit轻量级主干网络的好处
      • 计算效率提升
        • 模型部署更便捷
        • 方便模型移植
      • 模型可扩展性增强
        • 便于集成其他模块
        • 支持模型压缩技术
  • 主干网络替换
    • 1.创建yolov8_efficeintVit.py
    • 2.修改task.py
      • (1)引入创建的efficientViT文件
      • (2)修改_predict_once函数
      • (3)修改parse_model函数
    • 3.yolov8.yaml文件修改
      • yolov8.yaml
      • EfficientVit.yaml
    • 4.基于EfficientVit.yaml训练

  从网上可搜索的其他博主写的关于yolov8轻量化主干网络EfficientVit替换效果来看,传入代码后会有不能运行或者报错等情况,针对这种问题,专门编写了这篇“yolov8涨点系列之轻量化主干网络替换”,进行Ultralytics版本替换的具体步骤介绍。

YOLOv8 替换成efficientvit轻量级主干网络的好处

计算效率提升

  减少计算资源需求:轻量级主干网络的参数数量和计算复杂度较低,可以在硬件资源有限的设备上更高效地运行,如嵌入式设备、移动设备等。这使得 YOLOv8 能够在资源受限的环境中快速进行目标检测,扩大了其应用范围。例如,在一些智能摄像头、无人机等设备上,使用轻量级主干网络可以降低设备的能耗和散热需求,提高设备的续航能力和稳定性。
加快推理速度:轻量级网络的结构简单,计算量小,能够更快地处理输入图像,从而提高 YOLOv8 的推理速度。这对于实时性要求较高的应用场景,如自动驾驶、视频监控等非常重要,可以更快地检测到目标物体,为后续的决策和处理提供更及时的信息。

模型部署更便捷

  易于优化和调试:轻量级主干网络的结构相对简单,更容易进行优化和调试。在模型训练过程中,可以更快地收敛&#

### YOLOv8模型轻量化优化及小型化部署方案 #### 替换卷积模块以减轻计算负担 为了使YOLOv8模型变得更轻便,在不牺牲太多性能的前提下,可以采用SCConv来替代标准卷积操作。这种做法能够有效降低参数量并加速推断过程[^2]。 #### 应用Ghost模块精简结构 引入Ghost模块作为另一种途径来进行YOLOv8的瘦身工作。这种方法通过少量的基础滤波器生成大量特征映射,从而构建出既高效又具备良好表现力的新颖网络——GhostNet。此技术特别适合资源受限环境下的目标识别任务[^4]。 #### 利用Mish激活函数强化表达能力 除了调整硬件层面的设计外,软件上的改进同样重要。比如选用更适合当前版本YOLO体系特的激活机制—Mish,有助于进一步挖掘神经元之间的潜在联系,进而改善整体精度水平[^3]。 ```python import torch.nn as nn class SCConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(SCConv, self).__init__() # 定义SCConv的具体实现... def apply_scconv_to_yolov8(model): for name, module in model.named_children(): if isinstance(module, nn.Conv2d): # 找到所有普通的二维卷积层 setattr(model, name, SCConv( in_channels=module.in_channels, out_channels=module.out_channels)) elif hasattr(module, 'children'): # 对子模块递归处理 apply_scconv_to_yolov8(module) # 使用上述定义的方法对预训练好的YOLOv8实例进行改造 apply_scconv_to_yolov8(pretrained_model) ``` #### 数据集划分辅助训练流程管理 合理规划数据集对于任何机器学习项目都是至关重要的一步。针对特定应用场景定制化的分割策略可以帮助我们更好地控制实验变量,确保最终成果的质量稳定可靠[^5]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值