文章目录
-
- YOLOv8 替换成efficientvit轻量级主干网络的好处
-
- 计算效率提升
-
- 模型部署更便捷
- 方便模型移植
- 模型可扩展性增强
-
- 便于集成其他模块
- 支持模型压缩技术
- 主干网络替换
-
- 1.创建yolov8_efficeintVit.py
- 2.修改task.py
-
- (1)引入创建的efficientViT文件
- (2)修改_predict_once函数
- (3)修改parse_model函数
- 3.yolov8.yaml文件修改
-
- yolov8.yaml
- EfficientVit.yaml
- 4.基于EfficientVit.yaml训练
从网上可搜索的其他博主写的关于yolov8轻量化主干网络EfficientVit替换效果来看,传入代码后会有不能运行或者报错等情况,针对这种问题,专门编写了这篇“yolov8涨点系列之轻量化主干网络替换”,进行Ultralytics版本替换的具体步骤介绍。
YOLOv8 替换成efficientvit轻量级主干网络的好处
计算效率提升
减少计算资源需求:轻量级主干网络的参数数量和计算复杂度较低,可以在硬件资源有限的设备上更高效地运行,如嵌入式设备、移动设备等。这使得 YOLOv8 能够在资源受限的环境中快速进行目标检测,扩大了其应用范围。例如,在一些智能摄像头、无人机等设备上,使用轻量级主干网络可以降低设备的能耗和散热需求,提高设备的续航能力和稳定性。
加快推理速度:轻量级网络的结构简单,计算量小,能够更快地处理输入图像,从而提高 YOLOv8 的推理速度。这对于实时性要求较高的应用场景,如自动驾驶、视频监控等非常重要,可以更快地检测到目标物体,为后续的决策和处理提供更及时的信息。
模型部署更便捷
易于优化和调试:轻量级主干网络的结构相对简单,更容易进行优化和调试。在模型训练过程中,可以更快地收敛&#