近三年车道线检测paper with code

今天和大家分享2019-2021年车道线检测领域含有开源代码的论文。

ArXiv2021

LaneAF: Robust Multi-Lane Detection with Affinity Fields

论文下载地址:https://arxiv.org/pdf/2103.12040.pdf
开源代码地址:https://github.com/sel118/LaneAF

在这里插入图片描述

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

论文下载地址:https://arxiv.org/pdf/2105.05003.pdf
开源代码地址:https://github.com/aliyun/conditional-lane-detection

在这里插入图片描述

CVPR2021

Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection

论文下载地址:https://arxiv.org/pdf/2010.12035.pdf
开源代码地址:https://github.com/lucastabelini/LaneATT

在这里插入图片描述

AAAI2021

RESA: Recurrent Feature-Shift Aggregator for Lane Detection

论文下载地址:https://arxiv.org/pdf/2008.13719.pdf
开源代码地址:https://github.com/ZJULearning/resa

在这里插入图片描述

IEEE Transactions on Intelligent Transportation Systems 2021

Key Points Estimation and Point Instance Segmentation Approach for Lane Detection

论文下载地址:https://arxiv.org/pdf/2002.06604.pdf
开源代码地址:https://github.com/koyeongmin/PINet_new

在这里插入图片描述

CVPR2020

Inter-Region Affinity Distillation for Road Marking Segmentation

论文下载地址:https://arxiv.org/pdf/2004.05304v1.pdf
开源代码地址:https://github.com/cardwing/Codes-for-IntRA-KD
在这里插入图片描述

ECCV2020

Ultra Fast Structure-aware Deep Lane Detection

论文下载地址:https://arxiv.org/pdf/2004.11757.pdf
开源代码地址:https://github.com/cfzd/Ultra-Fast-Lane-Detection

在这里插入图片描述

Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection

论文下载地址:https://arxiv.org/pdf/2003.10656.pdf
开源代码地址:https://github.com/yuliangguo/Pytorch_Generalized_3D_Lane_Detection

在这里插入图片描述

WACV2020

End-to-end Lane Shape Prediction with Transformers

论文下载地址:https://arxiv.org/pdf/2011.04233.pdf
开源代码地址:https://github.com/liuruijin17/LSTR

在这里插入图片描述

IV2020

Lane Detection in Low-light Conditions Using an Efficient Data Enhancement : Light Conditions Style Transfer

论文下载地址:https://arxiv.org/pdf/2002.01177.pdf
开源代码地址:https://github.com/Chenzhaowei13/Light-Condition-Style-Transfer

在这里插入图片描述

ICPR2020

PolyLaneNet: Lane Estimation via Deep Polynomial Regression

论文下载地址:https://arxiv.org/pdf/2004.10924.pdf
开源代码地址:https://github.com/lucastabelini/PolyLaneNet

在这里插入图片描述

ICCV2019

Learning Lightweight Lane Detection CNNs by Self Attention Distillation

论文下载地址:https://openaccess.thecvf.com/content_ICCV_2019/papers/Hou_Learning_Lightweight_Lane_Detection_CNNs_by_Self_Attention_Distillation_ICCV_2019_paper.pdf
开源代码地址:https://github.com/cardwing/Codes-for-Lane-Detection
在这里插入图片描述

End-to-end Lane Detection through Differentiable Least-Squares Fitting

论文下载地址:https://arxiv.org/pdf/1902.00293
开源代码地址:https://github.com/wvangansbeke/LaneDetection_End2End

在这里插入图片描述
如果你对计算机视觉领域的目标跟踪、检测、分割、轻量化神经网络感兴趣,欢迎关注公众号一起学习交流~

在这里插入图片描述

### PaperWithCode 资源汇总 PaperWithCode 是一个集成了大量机器学习论文及其对应代码实现的平台。对于希望深入了解特定研究领域并获取其实现细节的研究人员来说非常有用。 #### 通过 PaperWithCode 获取资源的方法: 访问 [PaperWithCode](https://paperswithcode.com/) 可以找到许多关于深度监督网络(Deeply-Supervised Nets)的相关资料[^1]。该网站不仅提供了原始论文《Deeply-Supervised Nets》的链接,还列出了多个基于此工作的开源项目,方便开发者快速上手实践。 同样地,《Can GCNs Go as Deep as CNNs?》这篇探讨图卷积神经网络能否像传统CNN一样加深层数的文章也在 PaperWithCode 上有详细的介绍页面[^2]。这里不仅可以查看到最新的实验结果对比图表,还能下载官方推荐的数据集用于进一步探索。 除了上述两篇具体文献外,在 PaperWithCode 中还可以搜索更多来自 ArXiv 的前沿研究成果。例如输入关键词“deep learning”,就能得到一系列按影响力排名的文章列表,并附带GitHub上的实现仓库链接供读者参考。 另外值得注意的是,虽然部分内部部署路径如 `/home/ml/arxivapp` 并不是公开可访问的内容[^3],但在 PaperWithCode 和其他公共平台上通常能找到相似功能的应用实例或者教程文档来满足学习需求。 ```bash # 使用命令行工具 curl 或 wget 下载指定 URL 对应文件 curl -O https://raw.githubusercontent.com/PaperWeekly/BibTeX/master/papers_with_code.bib ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV51

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值