STGNN(www 2020)论文总结

在这里插入图片描述

### 使用 YOLOv8 和 DeepSORT 结合 STGNN 实现目标跟踪 YOLOv8 是一种先进的实时对象检测算法,而 DeepSORT 则是一种基于卡尔曼滤波器和匈牙利匹配的目标跟踪方法。STGNN(Spatial-Temporal Graph Neural Network)则可以用于建模时空关系,在轨迹预测方面具有显著优势。 以下是关于如何将这三种技术结合起来实现目标跟踪的具体说明: #### 数据预处理阶段 在实际应用中,数据通常需要经过一定的预处理才能被模型有效利用。对于视频流中的每一帧图像,首先通过 YOLOv8 进行目标检测[^1]。YOLOv8 的输出是一系列边界框及其对应的置信度分数。这些边界框会被传递给 DeepSORT 模块以完成多目标跟踪的任务。 ```python import torch from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载 YOLOv8 预训练权重 results = model(frame, conf=0.5) # 对单帧执行推理操作 detections = results[0].boxes.data.cpu().numpy() # 提取检测结果 ``` #### 跟踪模块集成 DeepSORT 接收来自 YOLOv8 的检测结果作为输入,并返回带有唯一 ID 的更新后的轨迹列表。此过程涉及特征提取、状态估计以及关联逻辑等多个子任务。为了提高效率并减少计算开销,建议仅保留高可信度的对象进行后续分析。 ```python from deep_sort_realtime.deepsort_tracker import DeepSort tracker = DeepSort(max_age=30) tracks = tracker.update_tracks(detections, frame=frame) for track in tracks: if not track.is_confirmed(): continue bbox = track.to_tlbr() id_num = str(track.track_id) cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (255, 255, 255), 2) cv2.putText(frame, f"ID:{id_num}", (int(bbox[0]), int(bbox[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) ``` #### 应用 STGNN 处理时空信息 一旦获得了连续时间步上的物体位置序列,就可以将其送入预先训练好的 STGNN 中进一步挖掘隐藏模式。具体来说,每个节点代表某个特定时刻下的某一个个体;边连接相邻时间段内的相同实体或者交互密切的不同主体之间形成的关系网络结构。最终得到的结果可用于异常行为识别、未来路径推测等多种场景之中。 ```python import numpy as np import stgcn # 假设已安装空间图卷积神经网络库 stg_model = stgcn.load_pretrained_model() def prepare_graph_data(tracks): graph_nodes = [] adjacency_matrix = np.zeros((len(tracks), len(tracks))) for i, t_i in enumerate(tracks): node_features = [t_i.centroid_x, t_i.centroid_y, ... ] # 构造节点属性向量 graph_nodes.append(node_features) for j, t_j in enumerate(tracks[:i]): distance = calculate_distance(t_i, t_j) if distance < threshold: adjacency_matrix[i][j] = weight_function(distance) return {'nodes':graph_nodes,'edges':adjacency_matrix} input_for_stgnn = prepare_graph_data([track for track in all_tracks]) output_predictions = stg_model.predict(input_for_stgnn) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值