SLAM算法
文章平均质量分 85
zhengbq_seu
学吧,还能怎么办
展开
-
dso详解--dso原理的"大卸八块"
本篇文章摘自:高翔的最新的知乎文章,转载请注明原文链接,同时感谢翔哥(半闲居士)一直以来对国内vslam做出的贡献.原文地址:https://zhuanlan.zhihu.com/p/29177540 本人对原文稍微做了细小的改动,如有不明,请查看原文链接.DSO(Direct Sparse Odome...转载 2018-06-04 16:05:24 · 1462 阅读 · 0 评论 -
回环检测的论文翻译LDSO,Visual Place Recognition等
目录LDSO——Direct Sparse Odometry with Loop Closureintroduction:(加入了pose graph优化和DBoW词典)Related Work:LOOP CLOSING IN DSO(重要!)A. FrameworkB. Point Selection with Repeatable FeaturesC和D没看Co...原创 2018-08-20 16:48:29 · 5965 阅读 · 2 评论 -
解<最小二乘法>
内容整理自<视觉SLAM十四讲>一.前言上回说道:这就得到了一个总体意义下的最小二乘问题(Least Square Problem)。我们明白它的最优解等价于状态的最大似然估计。也就是说最大似然估计又被转换成了噪声项(即误差)的平方的最小化.现在开始用非线性优化的方法求求解最小二乘法:注意前端通过ICP 和PnP会提供非线性优化算法的初值.初值可能会通过"先求相机位姿,再求...原创 2018-08-15 11:02:36 · 2144 阅读 · 0 评论 -
对极几何,PnP,ICP 和BA之间的关系
一.基本概念注意这里的BA 指的就是目标函数中的f函数为普通相机的观测方程的非线性优化解算方法,所以本文中BA与非线性优化同概念.对极几何,PnP,ICP 一般都只用于前端,为BA提供初值(这里的BA可能是前端也可能是后端),但是PnP和ICP都可能会用到BA的方法.BA在前端后端都会用到,前后端也就是所谓的范围的问题,前端可能只在相邻几帧进行BA操作,后端的范围就要大的多二.对极...原创 2018-08-15 12:50:15 · 7342 阅读 · 7 评论 -
双目DSO代码---仅做留存
部分内容来自:https://blog.csdn.net/huang826144283/article/details/78880675 DSO可执行文件参数传入main_dso_pangolin.cpp,流程如下参数入口:int main( intargc, char** argv ) 通过参数文件,获取图像、内参和光度相机标定模型中的非线性响应函数用到的参数gammaCa...原创 2018-07-19 22:34:52 · 1982 阅读 · 0 评论 -
读书笔记
第一本无人驾驶技术书很笼统,也很豁然开朗:对于技术书来说,过于笼统,讲得不详细;对于一本对自动驾驶还毕竟懵懵懂懂的人来说,看了可以理顺思路.目前看了第一章总览和第四章计算机视觉的应用.第一章的<无人驾驶系统简介>看了很有收获,对无人驾驶系统的三个部分"算法端","Client端","云端"有了一些认识.也对ROS(Client端口)有了初始的了解,云端用Spark系统.计算机视觉在无人驾驶中其实主...原创 2018-07-06 22:02:33 · 247 阅读 · 0 评论 -
slam迷惑(记录,看我将来能不能想通)
目录1.2 sim3优化既然是为了使单目slam的scale统一,那么双目回环之类的还需要sim3优化吗?1.3 论文dso先验具体指什么?由何而来?1.4 滤波法和关键帧法的区别?地图特征点的关联?已解决:1)看论文看到的所谓深度信息辅助,使得2D-2D变成3D-2D:2) 在已知相机运动的情况下,稠密建图中是否需要块匹配?还是根据位姿直接就可以得到匹配像素点?...原创 2018-07-05 18:04:10 · 912 阅读 · 0 评论 -
李群、李代数在计算机视觉中的应用
在多视角几何中,特别是在一些恢复相机运动轨迹的模型中,我们需要将相机的旋转和平移表示出来。通常情况下,我们都是在欧几里得空间中用R和t来进行相应的运算得到相机轨迹。然而,在很多论文中,作者们却喜欢用Lie algebra se(3)、so(3) 以及 Lie group SE(3)、SO(3) 之类的表示。紧接着,出现了很多术语,比如twist, tangen...转载 2018-07-05 15:26:49 · 469 阅读 · 0 评论 -
slam的一些资源整理_我自己的网易博客搬过来
目录1)代码类SLAM开源方案:语义相关:其余的:2)学习类资源python:3)数据集4)查询类5)其他类6) 写论文参考的话1)代码类SLAM开源方案:1.1 http://www.openslam.org/ 开源SLAM论坛 其中最新的是ORB-SLAM 有一些激光的开源SLAM 日后可能有用1.2 https://www.cnb...原创 2018-07-05 11:28:39 · 1375 阅读 · 0 评论 -
关于马尔科夫
百度百科马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 [1] 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转...原创 2018-07-05 11:07:24 · 373 阅读 · 0 评论 -
关于SLAM中的基于像素和基于特征点两大分类
视觉SLAM按照处理图像的方法不同分为基于像素(最小化光度误差)和基于特征点(最小化重投影误差):1)光流法指的是不用提取特征点的描述符,通过某个窗口内的像素具有同样的运动这个前提,计算像素偏移来跟踪相机运动,从而匹配上像素,从而匹配上点.后续计算位姿还是PnP ICP 对极几何啊相关的算法(最小化重投影误差)2)直接法差不多,比光流简单,但是我还不会.(最小化光度误差)3)不考虑点了...原创 2018-07-04 22:08:58 · 2017 阅读 · 0 评论 -
SLAM后端---状态估计 转变为 最小二乘法
内容源自<视觉slam十四讲>最大后验和最大似然状态估计转换为P(x|z)公式,然后根据贝叶斯法则,删去无关的,再把P(x)干脆也省略了,最后相当于求解arg max P(z|x),也就是最大似然.整个过程把求解最大后验概率转化为最大似然了.回顾一下经典 SLAM 模型。它由一个运动方程和一个观测方程构成,如下所示:xk乃是相机的位姿。我们可以使用变换矩阵或李代数表示它。至于观测方...原创 2018-06-26 17:07:21 · 3464 阅读 · 0 评论 -
SLAM刚刚开始的未来之“工程细节”(张哲的ICRA 2017 的一些整理
原标题:SLAM刚刚开始的未来之“工程细节” 作者 | 张哲 责编 | 何永灿 SLAM最近三年随着算法不断成熟、硬件不断增强、应用场景逐渐丰富,在学术界和工业界都有长足发展。在六月初新加坡刚刚结束的国际机器人顶级会议之一的ICRA 2017 ,机器人研究的方向和种类繁多,但计算机视觉、SLAM(同步定位和建图)、建图、空中机器人(泛指各类无人机)...转载 2018-07-08 11:02:03 · 1403 阅读 · 2 评论 -
已开源的SLAM
一、语义相关1)DA-RNN_Semantic Mapping with Data Associated特殊之处:相对于FCN而言,将获取的语义信息投影到Kinect地图里 获取3D的地图 一般的语义分割都是图像形态 没有定位信息,这个有相对的三维位置关系仪器:Kinect 需要深度图 软件:cuda tensorflow 有训练好的model供下载 Python2)SemanticFusion:...原创 2018-06-06 17:11:34 · 5556 阅读 · 0 评论 -
SLAM的一些学习笔记
目录一.基础概念1)关于Hx=g方程中没有位姿与位姿的约束H为什么是J的转置乘以J2)关于雅克比矩阵:2.1)所谓增量方程系数的路标部分为什么是对角阵3)所谓边缘化4)邻接矩阵(Adjacency Matrix)5)关于非线性优化定位和稠密建图的深度滤波器6)上采样和下采样7)专有名词二.各个开源代码2.1 dso前后端滑动窗口边缘...原创 2018-06-05 17:19:38 · 3937 阅读 · 0 评论 -
DSO之光度标定
光度标定(Photometric Camera Calibration)是DSO(Direct Sparse Odometry)论文中比较特别的一部分。常规的vSLAM不太考虑光度标定的问题。比如基于特征点的vSLAM,由于特征描述一般会有光照不变性,对图像的亮度值并不敏感。而在直接法(direct method)中,由于姿态估计以图像的亮度值为出发点,亮度值的准确度会影响算法的精度和稳定性。因此...转载 2018-06-04 17:27:32 · 1757 阅读 · 0 评论 -
Orb-SLAM回环检测的代码思路
部分转自博客链接.一. DetectLoop() (检测回环):LoopClosing.cc中DetectLoop()函数(1)首先从队列中取出一个关键帧,判断:如果距离上次闭环没多久(小于10帧),或者map中关键帧总共还没有10帧.如果是的话,则不进行闭环检测。在数据库里把当前关键帧加上就好了.if(mpCurrentKF->mnId<mLastLoopKFid+...原创 2018-09-07 21:59:46 · 7560 阅读 · 0 评论