平滑与滤波的关系
- 平滑是滤波实现的一种方法,平滑叫平滑滤波更确切;
- 平滑滤波是低频增强的空间域滤波技术。它的目的主要有两类:一类是模糊;另一类是消除噪音;
- 滤波的目的是指信号有各种频率的成分,滤除不想要的成分(即为常说的噪音),留下想要的成分,这既是滤波的过程也是目的。
图像平滑
图像平滑 是指用于突出图像的宽大区域低频成分、主干部分或者抑制图像噪声和高频成分,使图像亮度平缓渐变,减小突变的梯度,改善图像质量的图像处理方法。
图像平滑的目的主要是减少图像噪声。大部分噪声,如由敏感元器件、传输通道、量化器等引起的噪声,几乎都是随机性的。它们对某一像素点的影响是孤立的,和邻近各点相比,该点的灰度值显著不同。
图像平滑的方法
常用图像平滑的方法有:邻域平均法和高斯平滑两种。
- 均值平滑是将原图像的每一个像素都用其相邻的 (一般用3*3)个像素的灰度值的平均值来代替;
- 高斯(Gauss)模版:均值平滑去除能有效除去噪声,但是对于所有的9个点都一视同仁,所以平滑的效果并不理想,图像有一定程度的模糊。实际上,离中心点越近的点对该中心点的影响应该越大。为此,引入加权系数。构成高斯模板;