与第一型曲线积分一样,第二型曲线积分也可化为定积分来计算.
设平面曲线
L : { x = φ ( t ) , y = ψ ( t ) , t ∈ [ α , β ] , L:\left\{\begin{array}{l} x=\varphi(t), \\ y=\psi(t), \end{array} \quad t \in[\alpha, \beta],\right. L:{ x=φ(t),y=ψ(t),t∈[α,β],
其中 φ ( t ) , ψ ( t ) \varphi(t), \psi(t) φ(t),ψ(t) 在 [ α , β ] [\alpha, \beta] [α,β] 上具有一阶连续导函数, 且点 A A A 与 B B B 的坐标分别为 ( φ ( α ) (\varphi(\alpha) (φ(α), ψ ( α ) ) \psi(\alpha)) ψ(α)) 与 ( φ ( β ) , ψ ( β ) ) (\varphi(\beta), \psi(\beta)) (φ(β),ψ(β)). 又设 P ( x , y ) P(x, y) P(x,y) 与 Q ( x , y ) Q(x, y) Q(x,y) 为 L L L 上的连续函数, 则沿 L L L 从 A A A 到 B B B的第二型曲线积分
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a β [ P ( φ ( t ) , ψ ( t ) ) φ ′ ( t ) + Q ( φ ( t ) , ψ ( t ) ) ψ ′ ( t ) ] d t . ( 6 ) \begin{aligned} & \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y \\ = & \int_{a}^{\beta}\left[P(\varphi(t), \psi(t)) \varphi^{\prime}(t)+Q(\varphi(t), \psi(t)) \psi^{\prime}(t)\right] \mathrm{d} t . \quad\quad(6) \end{aligned} =∫LP(x,y)dx+Q(x,y)dy∫aβ[P(φ(t),ψ(t))φ′(t)+Q(φ(t),ψ(t))ψ′(t)]dt.(6)
读者可仿照 § 1 § 1 §1 中定理 20.1 的方法分别证明
∫ L P ( x , y ) d x = ∫ a β P ( φ ( t ) , ψ ( t ) ) φ ′ ( t ) d t , ∫ L Q ( x , y ) d y = ∫ α β Q ( φ ( t ) , ψ ( t ) ) ψ ′ ( t ) d t , \begin{array}{l} \int_{L} P(x, y) \mathrm{d} x=\int_{a}^{\beta} P(\varphi(t), \psi(t)) \varphi^{\prime}(t) \mathrm{d} t, \\[2ex] \int_{L} Q(x, y) \mathrm{d} y=\int_{\alpha}^{\beta} Q(\varphi(t), \psi(t)) \psi^{\prime}(t) \mathrm{d} t, \end{array} ∫LP(x,y)dx=∫aβP(φ(t),ψ(t))φ′(t)dt,∫LQ(x,y)dy=∫αβQ(φ(t),ψ(t))ψ′(t)dt,
由此便可得公式 (6), 这里不再赘述了.
对于沿封闭曲线 L L L 的第二型曲线积分 (2) 的计算, 可在 L L L上任意选取一点作为起点, 沿 L L L 所指定的方向前进, 最后回到这一点.
例 1
计算 ∫ L x y d x + ( y − x ) d y \int_{L} x y \mathrm{~d} x+(y-x) \mathrm{d} y ∫Lxy dx+(y−x)dy, 其中 L L L分别沿如图 20-4 中路线:
- (i) 直线 A B A B AB;
- (ii) A C B ⌢ \overset{\frown}{A C B} ACB⌢ (抛物线: y = 2 ( x − 1 ) 2 + 1 y=2(x-1)^{2}+1 y=2(x−1)2+1);
- (iii) A D B A A D B A ADBA (三角形周界).
解
(i) 直线 A B A B AB 的参数方程为
{ x = 1 + t , y = 1 + 2 t , t ∈ [ 0 , 1 ] . \left\{\begin{array}{l} x=1+t, \\ y=1+2 t, \end{array} \quad t \in[0,1] .\right. { x=1+t,y=1+2t,t∈[0,1].
故由公式(6)可得
∫ A B x y d x + ( y − x ) d y = ∫ 0 1 [ ( 1 + t ) ( 1 + 2 t ) + 2 t ] d t = ∫ 0 1 ( 1 + 5 t + 2 t 2 ) d t = 25 6 . \begin{aligned} & \int_{A B} x y \mathrm{~d} x+(y-x) \mathrm{d} y \\ = & \int_{0}^{1}[(1+t)(1+2 t)+2 t] \mathrm{d} t \\ = & \int_{0}^{1}\left(1+5 t+2 t^{2}\right) \mathrm{d} t=\cfrac{25}{6} . \end{aligned} ==∫ABxy dx+(y−x)dy∫</