文章目录
1 含参量正常积分
- 本章开始讨论多元函数各种积分问题,先研究含参量积分.
- f ( x , y ) f(x,y) f(x,y)定义在 R = [ a , b ] × [ c , d ] R=[a,b]\times [c,d] R=[a,b]×[c,d]上的二元函数
- 当
x
x
x取
[
a
,
b
]
[a,b]
[a,b]上某定值时,
- f ( x , y ) f(x,y) f(x,y)则是定义在 [ c , d ] [c,d] [c,d]上以 y y y为自变量的一元函数
- 若这时 f ( x , y ) f(x,y) f(x,y)在 [ c , d ] [c,d] [c,d]上可积
- 则其积分值是 x x x在 [ a , b ] [a,b] [a,b]上取值的函数

这儿是空的
定理19.1(连续性)
这儿是空的
定理19.2(连续性)
这儿是空的
定理19.3(可微性)
这儿是空的
定理19.4(可微性)
这儿是空的
定理19.5(可积性)
这儿是空的
定理19.6(可积性)
这儿是空的
2 含参量反常积分
这儿是空的
一 一致收敛性及其判别法
这儿是空的
定义1
- 若含参反常积分(1)与 Φ ( x ) \Phi(x) Φ(x)对任给的 ε > 0 \varepsilon>0 ε>0,
- 总存 N > c N>c N>c,使得当 M > N M>N M>N时,对一切 x ∈ [ a , b ] x\in[a,b] x∈[a,b]
- 都有
∣ ∫ c M f ( x , y ) d y − Φ ( x ) ∣ < ε |\int_c^Mf(x,y)dy-\Phi(x)|<\varepsilon ∣∫cMf(x,y)dy−Φ(x)∣<ε - 即
∣ ∫ M + ∞ f ( x , y ) d y ∣ < ε |\int_M^{+\infty}f(x,y)dy|<\varepsilon ∣∫M+∞f(x,y)dy∣<ε - 则称(1)在 I I I上一致收敛于 Φ ( x ) \Phi(x) Φ(x),
- 或说(1)在 I I I上一致收敛
theorem 19.7 一致收敛的柯西准则
- (1)在 I I I上一致收敛的充要是
- 对任给 ε > 0 \varepsilon>0 ε>0。
- 总存在某一实数
M
>
c
M>c
M>c,使得当
A
1
,
A
2
>
M
A_1,A_2>M
A1,A2>M时,对一切
x ∈ I x\in I x∈I,都有
∣ ∫ A 1 A 2 f ( x , y ) d y ∣ < ε (3) |\int_{A_1}^{A_2}f(x,y)dy|<\varepsilon\tag{3} ∣∫A1A2f(x,y)dy∣<ε(3) - 由定义1,还有以下含参积分一致收敛的判别准则
定理19.8
- 含参量在
I
I
I上一致收敛的充要:
lim A → + ∞ F ( A ) = 0 \lim_{A\to+\infty}F(A)=0 A→+∞limF(A)=0
F ( A ) = sup x ∈ I ∣ ∫ A + ∞ f ( x , y ) d y ∣ F(A)=\sup_{x\in I}|\int_A^{+\infty}f(x,y)dy| F(A)=x∈Isup∣∫A+∞f(x,y)dy∣
例1
- 证
∫ 0 + ∞ sin x y y d y (4) \int_{0}^{+\infty}\frac{\sin xy}{y}dy\tag{4} ∫0+∞ysinxydy(4) - 在 [ δ , + ∞ ) [\delta,+\infty) [δ,+∞)上一致收敛( δ > 0 \delta>0 δ>0)
- 但 ( 0 , ∞ ) (0,\infty) (0,∞)内不一致
证
这儿是空的
定理19.9
- (1)在 I I I上一致收敛的充要:
- 对任一趋于 + ∞ +\infty +∞的递增列 { A n } \{A_n\} {An}, A 1 = c A_1=c A1=c
- 函数项级数
∑ n = 1 + ∞ ∫ A n A n + 1 f ( x , y ) d y = ∑ n = 1 ∞ u n ( x ) (6) \sum_{n=1}^{+\infty}\int_{A_n}^{A_{n+1}}f(x,y)dy=\sum_{n=1}^{\infty}u_n(x)\tag{6} n=1∑+∞∫AnAn+1f(x,y)dy=n=1∑∞un(x)(6) - 在 I I I上一致收敛
证
这儿是空的
魏尔斯特拉斯M判别法
-
g
(
y
)
g(y)
g(y),使
1 ∣ f ∣ ≤ g , ( x , y ) ∈ I × [ c , + ∞ ) |f|\le g,(x,y)\in I\times [c,+\infty) ∣f∣≤g,(x,y)∈I×[c,+∞) - 若 ∫ c ∞ g d y \int_c^{\infty}gdy ∫c∞gdy收敛
- 则 ∫ c ∞ f ( x , y ) d y \int_c^{\infty}f(x,y)dy ∫c∞f(x,y)dy在 I I I上一致收
狄屎
- 对一切
N
>
c
N>c
N>c,含参量正常
∫ c N f ( x , y ) d y \int_c^Nf(x,y)dy ∫cNf(x,y)dy - 对参量
x
x
x在
I
I
I上一致有界
- 即存在正数 M M M
- 对 ∀ N > c ∀ x ∈ I \forall N>c\forall x\in I ∀N>c∀x∈I
- 有
∣ ∫ c N f ( x , y ) d y ∣ ≤ M |\int_c^N f(x,y)dy|\le M ∣∫cNf(x,y)dy∣≤M
- 每个
x
∈
I
x\in I
x∈I
- g ( x , y ) g(x,y) g(x,y)关于 y y y是单减
- 且当
y
→
∞
y\to \infty
y→∞时,对参量
x
x
x
- g ( x , y ) g(x,y) g(x,y)一致收敛于0
阿贝尔
- ∫ c + ∞ f ( x , y ) d y \int_c^{+\infty}f(x,y)dy ∫c+∞f(x,y)dy在 I I I上一致收敛
- 对每个 x x x, g g g为 y y y的单,
- 且对参量 x x x, g ( x , y ) g(x,y) g(x,y)在 I I I上一致有界
例2
这儿是空的
二 含参量反常积分的性质
这儿是空的
3 欧拉积分
这儿是空的
一 Γ \Gamma Γ函数
这儿是空的
二 B \Beta B函数
这儿是空的
三 Γ \Gamma Γ函数与 B \Beta B函数之间的关系
这儿是空的