19 含参量积分

1 含参量正常积分

  • 本章开始讨论多元函数各种积分问题,先研究含参量积分.
  • f ( x , y ) f(x,y) f(x,y)定义在 R = [ a , b ] × [ c , d ] R=[a,b]\times [c,d] R=[a,b]×[c,d]上的二元函数
  • x x x [ a , b ] [a,b] [a,b]上某定值时,
    • f ( x , y ) f(x,y) f(x,y)则是定义在 [ c , d ] [c,d] [c,d]上以 y y y为自变量的一元函数
    • 若这时 f ( x , y ) f(x,y) f(x,y) [ c , d ] [c,d] [c,d]上可积
    • 则其积分值是 x x x [ a , b ] [a,b] [a,b]上取值的函数

这儿是空的

定理19.1(连续性)

这儿是空的

定理19.2(连续性)

这儿是空的

定理19.3(可微性)

这儿是空的

定理19.4(可微性)

这儿是空的

定理19.5(可积性)

这儿是空的

定理19.6(可积性)

这儿是空的

2 含参量反常积分

这儿是空的

一 一致收敛性及其判别法

这儿是空的

定义1

  • 若含参反常积分(1)与 Φ ( x ) \Phi(x) Φ(x)对任给的 ε > 0 \varepsilon>0 ε>0,
  • 总存 N > c N>c N>c,使得当 M > N M>N M>N时,对一切 x ∈ [ a , b ] x\in[a,b] x[a,b]
  • 都有
    ∣ ∫ c M f ( x , y ) d y − Φ ( x ) ∣ < ε |\int_c^Mf(x,y)dy-\Phi(x)|<\varepsilon cMf(x,y)dyΦ(x)<ε

  • ∣ ∫ M + ∞ f ( x , y ) d y ∣ < ε |\int_M^{+\infty}f(x,y)dy|<\varepsilon M+f(x,y)dy<ε
  • 则称(1)在 I I I上一致收敛于 Φ ( x ) \Phi(x) Φ(x),
  • 或说(1)在 I I I上一致收敛

theorem 19.7 一致收敛的柯西准则

  • (1)在 I I I上一致收敛的充要是
  • 对任给 ε > 0 \varepsilon>0 ε>0
  • 总存在某一实数 M > c M>c M>c,使得当 A 1 , A 2 > M A_1,A_2>M A1,A2>M时,对一切
    x ∈ I x\in I xI,都有
    ∣ ∫ A 1 A 2 f ( x , y ) d y ∣ < ε (3) |\int_{A_1}^{A_2}f(x,y)dy|<\varepsilon\tag{3} A1A2f(x,y)dy<ε(3)
  • 由定义1,还有以下含参积分一致收敛的判别准则

定理19.8

  • 含参量在 I I I上一致收敛的充要:
    lim ⁡ A → + ∞ F ( A ) = 0 \lim_{A\to+\infty}F(A)=0 A+limF(A)=0
    F ( A ) = sup ⁡ x ∈ I ∣ ∫ A + ∞ f ( x , y ) d y ∣ F(A)=\sup_{x\in I}|\int_A^{+\infty}f(x,y)dy| F(A)=xIsupA+f(x,y)dy

例1


  • ∫ 0 + ∞ sin ⁡ x y y d y (4) \int_{0}^{+\infty}\frac{\sin xy}{y}dy\tag{4} 0+ysinxydy(4)
  • [ δ , + ∞ ) [\delta,+\infty) [δ,+)上一致收敛( δ > 0 \delta>0 δ>0)
  • ( 0 , ∞ ) (0,\infty) (0,)内不一致

这儿是空的

定理19.9

  • (1)在 I I I上一致收敛的充要:
  • 对任一趋于 + ∞ +\infty +的递增列 { A n } \{A_n\} {An}, A 1 = c A_1=c A1=c
  • 函数项级数
    ∑ n = 1 + ∞ ∫ A n A n + 1 f ( x , y ) d y = ∑ n = 1 ∞ u n ( x ) (6) \sum_{n=1}^{+\infty}\int_{A_n}^{A_{n+1}}f(x,y)dy=\sum_{n=1}^{\infty}u_n(x)\tag{6} n=1+AnAn+1f(x,y)dy=n=1un(x)(6)
  • I I I上一致收敛

这儿是空的

魏尔斯特拉斯M判别法

  • g ( y ) g(y) g(y),使
    1 ∣ f ∣ ≤ g , ( x , y ) ∈ I × [ c , + ∞ ) |f|\le g,(x,y)\in I\times [c,+\infty) fg,(x,y)I×[c,+)
  • ∫ c ∞ g d y \int_c^{\infty}gdy cgdy收敛
  • ∫ c ∞ f ( x , y ) d y \int_c^{\infty}f(x,y)dy cf(x,y)dy I I I上一致收

狄屎

  • 对一切 N > c N>c N>c,含参量正常
    ∫ c N f ( x , y ) d y \int_c^Nf(x,y)dy cNf(x,y)dy
  • 对参量 x x x I I I上一致有界
    • 即存在正数 M M M
    • ∀ N > c ∀ x ∈ I \forall N>c\forall x\in I N>cxI

    • ∣ ∫ c N f ( x , y ) d y ∣ ≤ M |\int_c^N f(x,y)dy|\le M cNf(x,y)dyM
  • 每个 x ∈ I x\in I xI
    • g ( x , y ) g(x,y) g(x,y)关于 y y y是单减
  • 且当 y → ∞ y\to \infty y时,对参量 x x x
    • g ( x , y ) g(x,y) g(x,y)一致收敛于0

阿贝尔

  • ∫ c + ∞ f ( x , y ) d y \int_c^{+\infty}f(x,y)dy c+f(x,y)dy I I I上一致收敛
  • 对每个 x x x, g g g y y y的单,
  • 且对参量 x x x, g ( x , y ) g(x,y) g(x,y) I I I上一致有界

例2

这儿是空的

二 含参量反常积分的性质

这儿是空的

3 欧拉积分

这儿是空的

Γ \Gamma Γ函数

这儿是空的

B \Beta B函数

这儿是空的

Γ \Gamma Γ函数与 B \Beta B函数之间的关系

这儿是空的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fgh431

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值