数学分析(十九)-含参量积分2-含参量反常积分2:含参量反常积分的性质【连续性、可微性、可积性】

这篇博客详细介绍了含参量反常积分的性质,包括在一致收敛条件下的连续性、可微性和可积性。通过多个定理和推论,证明了在特定条件下,极限、求导和积分运算可以相互交换,并提供了相关计算示例。
摘要由CSDN通过智能技术生成

定理 19.10 (连续性)

f ( x , y ) f(x, y) f(x,y) I × [ c , + ∞ ) I \times[c,+\infty) I×[c,+) 上连续,若含参量反常积分

Φ ( x ) = ∫ e + ∞ f ( x , y ) d y ( 12 ) \Phi(x)=\int_{e}^{+\infty} f(x, y) \mathrm{d} y \quad\quad(12) Φ(x)=e+f(x,y)dy(12)

I I I 上一致收敛, 则 Φ ( x ) \Phi(x) Φ(x) I I I 上连续.


由定理 19.9, 对任一递增且趋于 + ∞ +\infty + 的数列 { A n } ( A 1 = c ) \left\{A_{n}\right\}\left(A_{1}=c\right) { An}(A1=c), 函数项级数

Φ ( x ) = ∑ n = 1 ∞ ∫ A n h n + 1 f ( x , y ) d y = ∑ n = 1 ∞ u n ( x ) ( 13 ) \Phi(x)=\sum_{n=1}^{\infty} \int_{A_{n}}^{h_{n}+1} f(x, y) \mathrm{d} y=\sum_{n=1}^{\infty} u_{n}(x) \quad\quad(13) Φ(x)=n=1Anhn+1f(x,y)dy=n=1un(x)(13)

I I I 上一致收敛. 又由于 f ( x , y ) f(x, y) f(x,y) I × [ c , + ∞ ) I \times[c,+\infty) I×[c,+) 上连续,故每个 u n ( x ) u_{n}(x) un(x) 都在 I I I 上连续. 根据函数项级数的连续性定理, 函数 Φ ( x ) \Phi(x) Φ(x) I I I 上连续.

推论

f ( x , y ) f(x, y) f(x,y) I × [ c , + ∞ ) I \times[c,+\infty) I×[c,+) 上连续, 若 Φ ( x ) = ∫ c + ∞ f ( x , y ) d y \Phi(x)=\int_{c}^{+\infty} f(x, y) \mathrm{d} y Φ(x)=c+f(x,y)dy I I I 上内闭一致收敛, 则 Φ ( x ) \Phi(x) Φ(x) I I I 上连续.

这个定理也表明,在一致收敛的条件下,极限运算与无穷积分运算可以交换:

lim ⁡ x → x 0 ∫ c + ∞ f ( x , y ) d y = ∫ c + ∞ f ( x 0 , y ) d y = ∫ c + ∞ lim ⁡ x → x 0 f ( x , y ) d y . ( 14 ) \lim \limits_{x \rightarrow x_{0}} \int_{c}^{+\infty} f(x, y) \mathrm{d} y=\int_{c}^{+\infty} f\left(x_{0}, y\right) \mathrm{d} y=\int_{c}^{+\infty} \lim \limits_{x \rightarrow x_{0}} f(x, y) \mathrm{d} y .\quad\quad(14) xx0limc+f(x,y)dy=c+f(x0,y)dy=c+xx0limf(x,y)dy.(14)

定理 19.11 (可微性)

f ( x , y ) f(x, y) f(x,y) f x ( x , y ) f_{x}(x, y) fx(x,y) 在区域 I × [ c , + ∞ ) I \times[c,+\infty) I×[c,+) 上连续. 若 Φ ( x ) = ∫ e + ∞ f ( x , y ) d y \Phi(x)=\int_{e}^{+\infty} f(x, y) \mathrm{d} y Φ(x)=e+f(x,y)dy I I I 上收敛, ∫ e + ∞ f s ( x , y ) d y \int_{e}^{+\infty} f_{s}(x, y) \mathrm{d} y e+fs(x,y)dy I I I 上一致收敛, 则 Φ ( x ) \Phi(x) Φ(x) I I I 上可微,且

Φ ′ ( x ) = ∫ c + ∞ f x ( x , y ) d y . ( 15 ) \Phi^{\prime}(x)=\int_{c}^{+\infty} f_{x}(x, y) \mathrm{d} y .\quad\quad(15) Φ(x)=c+fx(x,y)dy.(15)


对任一递增且趋于 + ∞ +\infty + 的数列 { A n } ( A 1 = c ) \left\{A_{n}\right\}\left(A_{1}=c\right) { An}(A1=c), 令

u n ( x ) = ∫ A n h n + 1 f ( x , y ) d y . u_{n}(x)=\int_{A_{n}}^{h_{n+1}} f(x, y) \mathrm{d} y . un(x)=Anhn+1f(x,y)dy.

由定理 19.3 推得

u a ′ ( x ) = ∫ A a β n + 1 f x ( x , y ) d y . u_{a}^{\prime}(x)=\int_{A_{a}}^{\beta_{n+1}} f_{x}(x, y) \mathrm{d} y . ua(x)=Aaβn+1fx(x,y)dy.

∫ c + ∞ f x ( x , y ) d y \int_{c}^{+\infty} f_{x}(x, y) \mathrm{d} y c+fx(x,y)dy I I I 上一致收敛及定理19.9, 可得函数项级数

∑ n = 1 ∞ u n ′ ( x ) = ∑ n = 1 ∞ ∫ A n h n − 1 f x ( x , y ) d y \sum_{n=1}^{\infty} u_{n}^{\prime}(x)=\sum_{n=1}^{\infty} \int_{A_{n}}^{h_{n-1}} f_{x}(x, y) \mathrm{d} y n=1un(x)=n=1Anhn1fx(x,y)dy

I I I 上一致收敛,因此根据函数项级数的逐项求导定理,即得

Φ ′ ( x ) = ∑ n = 1 ∞ u n ′ ( x ) = ∑ n = 1 ∞ ∫ A n h n + 1 f x ( x , y ) d y = ∫ c + ∞ f x ( x , y ) d y , \Phi^{\prime}(x)=\sum_{n=1}^{\infty} u_{n}^{\prime}(x)=\sum_{n=1}^{\infty} \int_{A_{n}}^{h_{n}+1} f_{x}(x, y) \mathrm{d} y=\int_{c}^{+\infty} f_{x}(x, y) \mathrm{d} y, Φ(x)=n=1un(x)=n=1Anhn+1</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值