数学分析(十九)-含参量积分3-欧拉积分1: (Gamma) 伽马函数(Γ函数)【Γ(s)=∫₀xˢ⁻¹e⁻ˣdx;s>0】

本文介绍了伽马函数Γ(s)的定义、性质和递推公式,展示了其在s>0时的连续性、可导性,并通过递推公式Γ(s+1)=sΓ(s)探讨了Γ函数的图像、延拓及其在不同区间的行为。Γ函数在实数轴上被延拓到除去负整数以外的所有点,且在每个正区间上都有唯一的极小值点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

含参量积分
Γ ( s ) = ∫ 0 + ∞ x s − 1 e − x   d x , s > 0 , ( 1 )   B ( p , q ) = ∫ 0 1 x p − 1 ( 1 − x ) q − 1   d x , p > 0 , q > 0 ( 2 ) \begin{aligned} \Gamma(s) & =\int_{0}^{+\infty} x^{s-1} \mathrm{e}^{-x} \mathrm{~d} x, s>0, \quad\quad(1)\\[2ex] \mathrm{~B}(p, q) & =\int_{0}^{1} x^{p-1}(1-x)^{q-1} \mathrm{~d} x, p>0, q>0 \quad\quad(2) \end{aligned} Γ(s) B(p,q)=0+xs1ex dx,s>0,(1)=01xp1(1x)q1 dx,p>0,q>0(2)

在应用中经常出现, 它们统称为欧拉积分, 其中前者又称为伽马 (Gamma) 函数(或写作 Γ \Gamma Γ 函数), 后者称为贝塔 (Beta) 函数 (或写作 B \mathrm{B} B函数). 下面我们分别讨论这两个函数的性质.

Γ \Gamma Γ 函数 (1) 可写成如下两个积分之和:
Γ ( s ) = ∫ 0 1 x s − 1 e − x   d x + ∫ 1 + ∞ x s − 1 e − x   d x = Φ ( s ) + Ψ ( s ) , \Gamma(s)=\int_{0}^{1} x^{s-1} \mathrm{e}^{-x} \mathrm{~d} x+\int_{1}^{+\infty} x^{s-1} \mathrm{e}^{-x} \mathrm{~d} x=\Phi(s)+\Psi(s), Γ(s)=01xs1ex dx+1+xs1ex dx=Φ(s)+Ψ(s),

其中 Φ ( s ) \Phi(s) Φ(s) s ⩾ 1 s \geqslant 1 s1 时是正常积分, 当 0 < s < 1 0<s<1 0<s<1时是收敛的无界函数反常积分 (可用柯西判别法推得); Ψ ( s ) \Psi(s) Ψ(s) s > 0 s>0 s>0时是收玫的无穷限反常积分 (也可用柯西判别法推得). 所以含参量积分 (1) 在 s > 0 s>0 s>0 时收玫, 即 Γ \Gamma Γ 函数的定义域为 s > 0 s>0 s>0.

1、 Γ ( s ) \Gamma(s) Γ(s) 在定义域 s > 0 s>0 s>0 上连续且可导

在任何闭区间 [ a , b ] ( a > 0 ) [a, b](a>0) [a,b](a>0) 上, 对于函数 Φ ( s ) \Phi(s) Φ(s), 当 0 < x ⩽ 1 0<x \leqslant 1 0<x1时有 x s − 1 e − x ⩽ x a − 1 e − x x^{s-1} \mathrm{e}^{-x} \leqslant x^{a-1} \mathrm{e}^{-x} xs1exxa1ex, 由于 ∫ 0 1 x a − 1 e − x   d x \int_{0}^{1} x^{a-1} \mathrm{e}^{-x} \mathrm{~d} x 01

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值