含参量积分
Γ ( s ) = ∫ 0 + ∞ x s − 1 e − x d x , s > 0 , ( 1 ) B ( p , q ) = ∫ 0 1 x p − 1 ( 1 − x ) q − 1 d x , p > 0 , q > 0 ( 2 ) \begin{aligned} \Gamma(s) & =\int_{0}^{+\infty} x^{s-1} \mathrm{e}^{-x} \mathrm{~d} x, s>0, \quad\quad(1)\\[2ex] \mathrm{~B}(p, q) & =\int_{0}^{1} x^{p-1}(1-x)^{q-1} \mathrm{~d} x, p>0, q>0 \quad\quad(2) \end{aligned} Γ(s) B(p,q)=∫0+∞xs−1e−x dx,s>0,(1)=∫01xp−1(1−x)q−1 dx,p>0,q>0(2)
在应用中经常出现, 它们统称为欧拉积分, 其中前者又称为伽马 (Gamma) 函数(或写作 Γ \Gamma Γ 函数), 后者称为贝塔 (Beta) 函数 (或写作 B \mathrm{B} B函数). 下面我们分别讨论这两个函数的性质.
Γ \Gamma Γ 函数 (1) 可写成如下两个积分之和:
Γ ( s ) = ∫ 0 1 x s − 1 e − x d x + ∫ 1 + ∞ x s − 1 e − x d x = Φ ( s ) + Ψ ( s ) , \Gamma(s)=\int_{0}^{1} x^{s-1} \mathrm{e}^{-x} \mathrm{~d} x+\int_{1}^{+\infty} x^{s-1} \mathrm{e}^{-x} \mathrm{~d} x=\Phi(s)+\Psi(s), Γ(s)=∫01xs−1e−x dx+∫1+∞xs−1e−x dx=Φ(s)+Ψ(s),
其中 Φ ( s ) \Phi(s) Φ(s) 当 s ⩾ 1 s \geqslant 1 s⩾1 时是正常积分, 当 0 < s < 1 0<s<1 0<s<1时是收敛的无界函数反常积分 (可用柯西判别法推得); Ψ ( s ) \Psi(s) Ψ(s) 当 s > 0 s>0 s>0时是收玫的无穷限反常积分 (也可用柯西判别法推得). 所以含参量积分 (1) 在 s > 0 s>0 s>0 时收玫, 即 Γ \Gamma Γ 函数的定义域为 s > 0 s>0 s>0.
1、 Γ ( s ) \Gamma(s) Γ(s) 在定义域 s > 0 s>0 s>0 上连续且可导
在任何闭区间 [ a , b ] ( a > 0 ) [a, b](a>0) [a,b](a>0) 上, 对于函数 Φ ( s ) \Phi(s) Φ(s), 当 0 < x ⩽ 1 0<x \leqslant 1 0<x⩽1时有 x s − 1 e − x ⩽ x a − 1 e − x x^{s-1} \mathrm{e}^{-x} \leqslant x^{a-1} \mathrm{e}^{-x} xs−1e−x⩽xa−1e−x, 由于 ∫ 0 1 x a − 1 e − x d x \int_{0}^{1} x^{a-1} \mathrm{e}^{-x} \mathrm{~d} x ∫01