图解方法求解卷积
01 图解法算卷积
一、卷积介绍
在求解信号的卷积过程中,如果信号本身比较简单,分段少,可以直接使用卷积公式求解。 但对于一些分段较多的信号 求解它们的卷积直接使用公式就会遇到麻烦。 比如这里包括有一个方波信号, 一个三角波信号, 它们的卷积结果包括三段函数, 如果直接代入卷积公式求解, 就会产生较多的中交叉项, 每一个交叉项的积分, 还都需要考虑到各自对应的时间区间, 分析起来比较麻烦, 求出结果容易出错。 最后根据不同的时间段, 将结果合并之后, 就会发现中间出现的一些公式都会被合并, 出现最终的二次多项式 以及一次多项式。
▲ 图1.1.1 信号卷积
对于这种有限长分段信号,直接使用公式计算不仅步骤多,而且中间很多计算最后都会被抵消,做了很多无用功。 因此如果能够按照参与卷积的信号实际重合的位置,确定参与积分的函数以及及分界线,就会节省很多计算。 这就是卷积的图解方法。
二、卷积图解法
图解方法实际上就是对卷积公式中信号的运算映射到波形变化上。 在卷积积分内,tao 是积分变量, 选择其中一个信号进行反褶, t 是积分参量,它对应反褶后信号的平移, 将平移后的两个信号相乘 最后进行积分。 积分的上下界限需要根据具体信号重叠区域进行确定。 前面公式所对应信号波形变化,可以由这几张图来表示。 沿着箭头完成卷积信号的操作。 在最后一步积分的过程中,可以看到实际积分区间只是两个信号重叠对应的时间范围。 这样就可以把该范围之外信号省略,不用考虑了。 这样就可以简化实际计算过程。
以方波和三角波为例,在演示图解法的过程。 在这里选择方波进行反褶,当 t 小于 1 时, 方波与三角波没有重合,此时卷积结果为 0。 当 t 大于 1 小于 2 时, 方波与三角波部分重合,积分的结果是他们重合对应的三角形的面积。 当 t 大于2 小于 3 时, 方波与三角波完全重合, 积分结果是方波前后所截取三角波产生的梯形面积。 当 t 大于3 小于4时, 方波与三角波后面部分重合, 所积分的结果恰好是它们重叠对应的梯形面积。 当 t 大于4 之后, 方波移出三角波所在的范围,它们之间没有重合, 对应的积分为 0。
▲ 图1.2.1 卷积过程
根据刚才分析, 整个卷积分成五个阶段, 每个阶段对应不同的积分表达式。

▲ 图1.2.1 卷积分成五个阶段
三、习题求解
在留的作业中,第一个是必做题, 给出了参与卷积的两个信号的函数波形, 求它们的卷积, 并绘制出相应的卷积结果。 这是两个信号的波形,一个是宽度为,高度为1 的矩形脉冲信号,一个是半边指数衰减信号。 按照图解方法分析卷积过程,可以将求解过程分为三个阶段。 分别对应矩形脉冲信号与指数信号未重合、部分重合以及完全重合三个阶段。 卷积积分按照不同的积分上下限进行计算,形成不同的接过规律。 下面具体分析一下这三个阶段。
▲ 图1.3.1 卷积习题和计算结果
第一阶段是在 t 小于 0 时, 卷积内两个信号没有重叠, 卷积结果为 0。 第二阶段,对应的 t 大于 0 小于 1, 卷积内两个信号部分重合, 是对 指数函数在 0 到 t 之间进行积分, 这是一个指数上升的积分曲线。 第三阶段是当 t 对于 1 之后, 积分内两个信号完全重合, 积分的上下限为 t 减一 到 t 。积分的结果是指数下降的曲线。 下面让我们再看看这个卷积过程。 绿色曲线对应的卷积结果, 它分为三个阶段, 可以使用分段函数了表示卷积结果。 这是作业中第一个卷积练习。


▲ 图1.3.2 卷积结果
四、考试题目
作业中的这道选择题,实际上是去年的期末考试题目, 题目的复杂之处在于其中一个参与卷积的信号 它具有两个不同的变化阶段。 这样就会使得确定卷积阶段变得更多。 按照两个函数之间重叠的区域不同,可以将卷积阶段划分为五个阶段, 从h(t) 在最左边,两者之间没有重叠,到他们之间有部分重叠, 紧接他们完全重叠, 接下来他们只有部分重叠区域, 最后它们之间没有重叠。说实在的,如果 h(t) 的宽度不是 1, 而是再大一些或者小一些, 前面重叠的阶段还会变得更多。 下面给大家展示一下每个阶段积分的结果。
▲ 图1.4.1 卷积阶段划分
对于每一阶段, 根据不同重叠区域进行积分, 在 t 小于 0时, 他们之间没有重叠,所以卷积结果为 0。 第二阶段, t 处在 0 到 1 之间,它们部分重合, 这是计算卷积积分的过程, 最后化简得到指数函数和t 的多项式。 在 t 处于 1到2之间, 积分阶段包括两部分, 这是第一部分, 还有另外一个阶段需要进行计算, 后面是 t 处于 2到3 之间, 积分只有一个阶段。 最后是 t 大于 3 之后, 卷积结果为 0。 这是把五个阶段所得到的结果汇总在这里。 现在看起来,这个题目作为考试题目有点太繁琐了。

最后展示一下卷积的波形, 卷积波形是一个连续的信号。

※ 总 结 ※
本文对作业中的图解求卷积的方法进行了介绍。 利用图解方法可以对多段函数求解过程进行简化。 避免了过多的中间求解步骤。
■ 相关文献链接:
● 相关图表链接: