HBM之后,高带宽闪存(HBF)也来了!

近日,SanDisk 推出的新型高带宽闪存(High Bandwidth Flash,HBF),这项技术结合了3D NAND的容量优势和高带宽内存(HBM)的高速性能。HBF旨在为需要高带宽和大容量的AI推理应用提供解决方案,并且能够实现高达4TB的VRAM容量。

1. HBF 技术的基本原理与架构

HBF的概念类似于HBM,它通过硅通孔(TSVs)将多个高性能闪存核心芯片堆叠在一起,并连接到一个可以并行访问闪存子阵列的逻辑芯片上。这种架构基于SanDisk的BICS 3D NAND技术,采用CMOS直接键合到阵列(CBA)设计,将3D NAND存储阵列键合在一个使用逻辑工艺技术制造的I/O芯片之上。

图片

传统的 NAND 芯片设计通常将核心 NAND 闪存存储阵列划分为平面、页和块,而 HBF 似乎将芯片分解为 “众多子阵列”,以便能够同时进行访问。每个子阵列(拥有自己的页和块)大概都有其独立的读写路径,这一设计理念远超传统的多平面 NAND 设备。目前,第一代 HBF 将使用 16 个 HBF 核心芯片,SanDisk 还发明了一种专有的堆叠技术,以实现最小的翘曲,从而能够堆叠 16 个 HBF 核心芯片,并且开发出了可以同时从多个 HBF 核心芯片访问数据的逻辑芯片。

图片

2. HBF技术优势与潜在应用

SanDisk 表示,HBF 技术在相似成本下,不仅能够提供与 HBM 相当的带宽,还能实现 8 到 16 倍的容量提升。

图片

第一代 HBF 可在 GPU 上实现高达 4TB 的 VRAM 容量,未来还会有更大的容量提升空间。从 SanDisk 提供的示例来看,八个 HBF 堆栈拥有 4TB 的 NAND 内存,即每个堆栈可存储 512GB,这是单个 8 层 HBM3E 堆栈(容量为 24GB)容量的 21 倍。这意味着 HBF 技术能够为需要存储大量数据的应用,如大型 AI 模型存储,提供强大的支持。

图片

图片

单GPU搭载4TB存储,可直接加载GPT-4等大型AI模型,减少数据迁移延迟。相比HBM,单位容量成本更低(宣称相似成本下容量提升8-16倍),适合大规模AI推理部署。HBF 产品主要针对读密集型、高吞吐量的应用,例如大型 AI 推理数据集。对于许多 AI 推理任务而言,在可行成本下的高吞吐量是关键因素,而非 HBM 或其他类型 DRAM 所提供的超低延迟。所以,尽管 HBF 在每比特延迟上无法与 DRAM 相媲美,但它能够满足 AI 推理领域对高容量、高带宽且成本相对较低的需求,在市场上占据独特的一席之地。

此外,NAND的静态非易失性降低待机功耗,适用于边缘计算与移动设备(如未来手机AI协处理)

SanDisk 尚未提及 HBF 的写耐久性问题。NAND 具有有限的使用寿命,只能承受一定数量的写入操作。虽然 SLC 和 pSLC 技术相较于消费级 SSD 中使用的 TLC 和 QLC NAND 具有更高的耐久性,但这是以牺牲容量和增加成本为代价的。此外,NAND 通常以块为粒度进行写入,而内存是按位寻址的,这也是 HBF 技术需要解决的关键挑战之一。NAND的块级擦除与页级读写限制精细数据操作,需通过缓存层(如HBM)缓解

3. 市场定位与前景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古猫先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值