【VisionMaster】图像源模块之相机

1. 添加全局相机

  • 打开VisionMaster,在工具栏中点击相机管理按钮
    在这里插入图片描述

  • 点击相机管理页面的左侧部分的右上角+,添加一个全局相机
    在这里插入图片描述

  • 全局相机配置参数如下所示
    在这里插入图片描述

  • 选择相机右侧的下拉框中选择已经配置好的相机,将自动获取相机的常用参数。
    在这里插入图片描述

  • 切换到触发设置页面,并将触发源参数修改为SOFTWARE
    在这里插入图片描述

  • 点击确定按钮,完成配置。

2. 配置相机

  • VisionMaster左侧的工具栏中的采集分组中,拖拽图像源模块到流程中,并在打开的参数配置页面中的图像源参数中选择相机
    在这里插入图片描述
  • 关联相机参数中选择已配置好的全局相机
    在这里插入图片描述
  • 关闭参数配置页面,点击流程运行按钮,完成相机取图任务
    在这里插入图片描述
### VisionMaster IT 技术资料概述 VisionMaster 是专注于计算机视觉领域的一个重要资源集合平台,涵盖了多种技术和应用方向。以下是几个关键方面的详细介绍: #### 计算机视觉模型发展 Vision Transformer (ViT) 的研究进展显著影响了图像识别任务的效果。具体来说,在 ViT 发展过程中有两个重要的里程碑工作——DeiT 和 VT[^1]。这两个模型都致力于仅依赖 ImageNet 数据集来提升性能,而不需要额外的大规模私有数据源。 #### 3D 视觉技术社区支持 对于希望深入理解并掌握 3D 视觉技能的学习者而言,存在专门的知识共享平台提供全面的支持和服务。这些服务不仅限于理论讲解和技术文档,还包括实际案例分析、在线答疑解惑等功能[^2]。通过参与这样的社群活动,可以加速个人成长,并有机会接触到行业内的最新动态和发展趋势。 #### 性能优化实践 为了提高基于大规模图片分类的数据处理效率,研究人员不断探索新的方法论以缩短训练周期。例如,在 Imagenet1K 这样的标准测试环境中,经过一系列针对性调整之后,单轮 epoch 执行所需的时间成功减少了约三分之一[^4]。这种改进有助于加快实验迭代速度,从而更高效地推进科研进程。 ```python import time def train_model(): start_time = time.time() # 模拟训练过程... end_time = time.time() elapsed_time = end_time - start_time print(f"Training completed in {elapsed_time:.2f} hours.") ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhy29563

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值