Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting

CrossTReS是一种针对交通流量预测的跨城市选择性迁移学习框架,旨在解决源城市和目标城市之间的数据差异问题。通过特征网络和加权网络,它学习城市间的通用空间特征并自适应地调整源区域权重,以辅助目标城市的微调。该方法在实际数据集上表现出优于现有方法的性能,并提供可解释的区域权重可视化。
摘要由CSDN通过智能技术生成

深度学习模型已被证明在为交通预测建模复杂时空数据方面具有强大的功能。在实践中,有效的深度交通预测模型依赖于大规模交通数据,而这些数据在现实世界中并不总是可用的。为了缓解数据稀缺问题,一种有希望的方法是使用跨城市迁移学习方法对具有丰富数据的源城市中训练良好的模型进行微调。然而,现有的方法忽略了源城市和目标城市之间的差异,因此源城市训练的模型可能包含噪声甚至有害的源知识。为解决该问题,本文提出CrossTReS,一种用于流量预测的选择性迁移学习框架,自适应地重新加权源区域以辅助目标微调。作为基于微调的跨城市迁移学习的通用框架,CrossTReS由特征网络、加权网络和预测模型组成。使用节点级和边缘级域适应技术训练特征网络,以学习源城市和目标城市的可泛化空间特征。通过源-目标联合元学习进一步训练加权网络,使有助于目标微调的源区域被分配高权重。最后,利用学习到的权重在源城市上选择性地训练预测模型,以初始化目标微调。我们使用真实世界的出租车和自行车数据来评估crossres,在相同的设置下,crossres比最先进的基线高出8%。此外,学习到的区域权重提供了可解释的可视化。

问题:

源训练和目标微调目标之间存在固有的差距。跨城市迁移学习的总体目标是最小化目标数据LT上的误差,而源训练忽略了LT,只最小化源数据上的误差。因此,现有工作使用的源训练方法,包括监督学习和元学习,可能会学习到噪声或有害的源知识,导致目标微调的性能次优,如图1所示。

为了弥补这一差距,本文旨在进行选择性的跨城市迁移学习,以排除有害的源知识。对于基于微调的方法,源知识在源训练期间学习,而不是在微调期间学习。因此,在源训练期间进行选择性迁移。此外,由于城市通常被划分为区域[19],我们在区域级别上进行选择。具体来说,我们将选择性来源训练问题表述如下。

 

 

 Overview of CrossTReS

选择性来源训练的关键挑战有两个方面。首先,我们需要提取在源城市和目标城市中都具有指示性的与城市无关的区域特征。其次,根据提取的特征,评估源区域对目标城市微调的帮助程度。为了实现这两个目标,CrossTReS包含以下组件,如图2所示 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值