Deep Extreme Mixture Model for Time Series Forecasting

Deep Extreme Mixture Model for Time Series Forecasting

时间序列预测(TSF)是一个广泛研究的课题,在现实世界中有许多应用,如天气预测、股票市值预测、交通控制等。已经开发了许多机器学习模型来解决TSF,然而,预测极端值仍然是一个需要有效解决的挑战。极端事件虽然很少发生,但往往会造成巨大的影响,因此极端事件预测具有重要意义。假设时间序列数据的轻尾分布,如高斯分布,不能正确地建模极值点。为解决该问题,本文提出一种新的方法来提高对极端事件预测的注意力。在工作中,将时间序列数据分布建模为高斯分布和广义帕累托分布(GPD)的混合。开发了一种新的用于单变量时间序列预测的深度极端混合模型(DXtreMM),解决了时间序列中的极端事件。该模型由两个模块组成:1)基于变分解耦自编码器(VD-AE)的分类器和2)基于多层感知器(MLP)的预测单元,结合广义帕累托分布(GPD)估计器分别对下极值和上极值进行预测。VD-AE分类器模型预测给定时间段内极端事件发生的可能性,预测器模块预测准确值。通过在真实数据集上的大量实验表明,该模型在极端事件上表现良好,在正常时间步预测方面与现有的基线方法相当。

 我们的方法背后的思想是,大部分时间序列值遵循高斯分布,而位于分布尾部任意一部分的极值遵循重尾分布。

在这项工作中,我们使用GPD分布来模拟左尾和右尾。总的来说,数据遵循一个混合分布模型,其中一个高斯分布和两个GPD分布对尾部进行建模。对于预测任务,给定一个时间序列,𝑦𝑡−𝑙,…,𝑦𝑡,我们需要知道下一步是极端或正常的概率并预测实际值。我们开发了3种独立的预测模型,即专注于预测极值的左/右极值预测模型和专注于预测正常值的正常预测模型。由于数据服从混合分布,分类器模型应该足够复杂以捕获数据的真实分布。如前所述,简单的分类器模型忽略了极端事件的存在。为此,本文开发了一种变分解缠自编码器分类器模型(VD-AE),其决策决定了三个值预测模型中的哪一个将被触发进行预测。我们将在这里详细描述这些模型中的每一个。完整的模型图如图2所示。

 总结:用数据模拟时间序列数据分布参数,实现极端值发生概率判断,另一个是预测实际值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值