A Deep Generative Model for Trajectory Modeling and Utilization

A Deep Generative Model for Trajectory Modeling and Utilization

现代基于位置的系统刺激了城市轨迹数据的爆炸性增长,推动了许多现实世界中的应用,如轨迹预测。然而,繁重的大数据处理开销和隐私问题阻碍了轨迹的获取和利用。受交通路网上规则轨迹分布的启发,本文提出用深度生成模型对轨迹数据进行秘密建模,并利用该模型为下游任务生成有代表性的轨迹或直接支持这些任务(如流行度排名),而不是获取和处理原始的大轨迹数据。然而,对具有时变且偏态分布的高维轨迹进行建模是相当具有挑战性的。为解决该问题,本文利用文献忽略的一个重要因素——与轨迹分布密切相关的基础道路属性(如道路类型和方向),在偏斜分布上对时空特征进行审慎编码,对轨迹序列进行建模和生成。具体地,我们将轨迹分解为具有时间信息的地图匹配道路序列,并将其嵌入以编码时空特征。然后,通过从底层道路属性中编码固有的路径规划模式来增强轨迹表示。然后,编码边缘之间的空间相关性以及每日和每周的时间周期信息。然后,利用元学习模块,基于编码好的轨迹前缀从偏斜轨迹数据中学习广义轨迹分布模式,逐步生成轨迹序列;最后,通过使用裁剪梯度秘密学习模型差分来保护轨迹隐私。在真实数据集上的实验表明,该方法明显优于现有方法。 

 我们提出了一个名为MTNet的深度生成模型,通过充分利用底层道路属性,有效地建模高维但倾斜的轨迹数据

MTNET

提出一种基于元学习的深度生成模型MTNet,利用时空特征嵌入和轨迹生成的内在道路知识。

 图4给出了MTNet的概述,它由以下四个模块组成。(1)轨迹表示模块(图4 (b))用于嵌入空间路径边缘和时间特征,旨在有效地表示轨迹序列。(2)道路知识编码模块(图4 (c))用于编码道路边缘属性,引入固有的路径规划特征,增强轨迹前缀编码(3)轨迹前缀编码模块(图4 (a)的一部分)用于编码轨迹前缀,旨在从高维轨迹前缀中提取长期时空依赖。(4)元生成器模块(图4 (d))用于轨迹路径边及其行程时间生成,旨在有效支持倾斜轨迹数据上的轨迹建模与生成。此外,为了提高发电效率和质量,输出被图4 (e)所示的路网拓扑约束屏蔽。

1)DIFFERENTIALLY PRIVATE MTNET

训练损失函数分为两部分:学习轨迹路径分布和相应的旅行时间分布。对于轨迹路径,我们使用负对数似然(NLL)损失,如公式4所示,它是每个时间步长的累计损失𝑡∈[1,𝐿]。对于旅行时间,我们使用方程5中的平均绝对损失(MAE),即每一步的累计旅行时间绝对误差𝑡∈[1,𝐿]。我们使用超参数𝜆来平衡这两部分的影响,在方程6中,𝜃表示所有可训练参数,我们优化𝜃以最小化总损失L。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值