Nature、science、cell旗下刊物

本文详细介绍了Nature, Science, Cell三大顶级期刊的子刊情况,包括Nature子刊的分类,如Nature Chemistry, Nature Medicine等,以及Science的子刊如Science Signaling, Science Robotics等,并提到了Cell的部分子刊,如Molecular Cell和Cancer Cell。这些子刊涵盖了从综合科学到特定领域的广泛研究。" 127833116,9803657,使用Qt进行摄像头录像实践,"['Qt开发', 'UI设计', '视频处理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像分割相关领域可以勉强靠边尝试的有
Nature Communication、Science RoboticsScientific Reports

Nature旗下的子刊有哪些?是否有国产SCI期刊?

Nature 杂志与所有的 Nature 子刊
都属于英国的 Nature 出版集团(Nature publishing group)。
除此之外,Nature 出版集团还拥有数目众多的其他期刊,都统一被称为 Nature Research 系列期刊。

### 关于联邦学习的学术期 对于希望深入了解联邦学习的研究者而言,选择合适的学术期至关重要。顶级科学期如《Nature》及其、《Science》以及其扩展版《Science Advances》,还有《Cell》和《PANS》都是发表高质量研究成果的理想平台[^3]。 除了这些综合性的顶尖期外,《IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)`)、《Journal of Machine Learning Research (JMLR)》、《Neural Computation》等专注于机器学习领域内的权威刊物也经常收录有关联邦学习的文章。特别是针对特定应用场景下的联邦学习进展,例如医疗健康领域的《npj Digital Medicine》或者通信网络方向上的《IEEE Journal on Selected Areas in Communications》都可能是很好的投稿目标。 另外,在关注具体的应用场景之外,《Proceedings of the IEEE》作为电气电工程师协会旗下的综述类期,适合那些旨在提供全面概述或对未来发展方向做出预测的工作;而像《ACM Computing Surveys》这样的计算机学科综合性评论杂志同样值得考虑。 #### 示例代码片段展示如何通过Python访问某知名数据库获取相关文献列表: ```python import requests def get_papers_from_db(topic="federated learning", count=5): url = f"https://api.example.com/search?query={topic}&size={count}" response = requests.get(url) if response.status_code == 200: papers = response.json() return papers['results'] else: raise Exception(f"Failed to fetch data: {response.text}") papers = get_papers_from_db() for paper in papers: print(paper["title"]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉-Archer

图像分割没有团队的同学可加群

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值