CNN-LSTM-Attention
基于卷积神经网络-长短期记忆网络结合注意力机制的多变量/时间序列预测 Matlab语言
特点:多特征输入,单输出,可实现回归预测或超前预测,Matlab版本最好为新版本。
[1]卷积神经网络 (CNN):捕捉数据中的局部模式和特征。
[2]长短期记忆网络 (LSTM):处理数据捕捉长期依赖关系。
[3]注意力机制:为模型提供了对关键信息的聚焦能力,从而提高预测的准确度。
直接替换Excel数据即可用,注释清晰,适合新手小白,图片excel文件标有特征预测列
-————————————————————————————————————————————————
评价结果如下所示:
平均绝对误差MAE为:1.277
均方误差MSE为: 2.4157
均方根误差RMSE为: 1.5543
决定系数R^2为: 0.95641
剩余预测残差RPD为: 5.0164
平均绝对百分比误差MAPE为: 0.035666