基于CNN-LSTM-Attention组合模型的时间序列预测matlab代码

CNN-LSTM-Attention

基于卷积神经网络-长短期记忆网络结合注意力机制的多变量/时间序列预测 Matlab语言

特点:多特征输入,单输出,可实现回归预测或超前预测,Matlab版本最好为新版本。

[1]卷积神经网络 (CNN):捕捉数据中的局部模式和特征。

[2]长短期记忆网络 (LSTM):处理数据捕捉长期依赖关系。

[3]注意力机制:为模型提供了对关键信息的聚焦能力,从而提高预测的准确度。

直接替换Excel数据即可用,注释清晰,适合新手小白,图片excel文件标有特征预测列

-————————————————————————————————————————————————

评价结果如下所示:

平均绝对误差MAE为:1.277

均方误差MSE为:    2.4157

均方根误差RMSE为: 1.5543

决定系数R^2为: 0.95641

剩余预测残差RPD为: 5.0164

平均绝对百分比误差MAPE为: 0.035666

代码获取链接:基于CNN-LSTM-Attention组合模型的时间序列预测matlab代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值