PCL ROS的消息回调处理:ros::spin()与ros::spinOnce()

ROS的消息回调处理:ros::spin()与ros::spinOnce()

我们知道ROS的主循环中需要不断调用ros::spin()ros::spinOnce(),两者区别在于前者调用后不会再返回,而后者在调用后还可以继续执行之后的程序。

在使用ros::spin()的情况下,一般来说在初始化时已经设置好所有消息的回调,并且不需要其他背景程序运行。这样以来,每次消息到达时会执行用户的回调函数进行操作,相当于程序是消息事件驱动的;而在使用ros::spinOnce()的情况下,一般来说仅仅使用回调不足以完成任务,还需要其他辅助程序的执行:比如定时任务、数据处理、用户界面等。

关于消息接收回调机制在ROS官网上略有说明 (callbacks and spinning)。总体来说其原理是这样的:除了用户的主程序以外,ROS的socket连接控制进程会在后台接收订阅的消息,所有接收到的消息并不是立即处理,而是等到spin()或者spinOnce()执行时才集中处理。所以为了保证消息可以正常接收,需要尤其注意spinOnce()函数的使用 (对于spin()来说则不涉及太多的人为因素)。

I. 对于速度较快的消息,需要注意合理控制消息队列及spinOnce()的时间。例如,如果消息到达的频率是100Hz,而spinOnce()的执行频率是10Hz,那么就要至少保证消息队列中预留的大小大于10。

II. 如果对于用户自己的周期性任务,最好和spinOnce()并列调用。即使该任务是周期性的对于数据进行处理,例如对接收到的IMU数据进行Kalman滤波,也不建议直接放在回调函数中:因为存在通信接收的不确定性,不能保证该回调执行在时间上的稳定性。

1
2
3
4
5
6
7
8
9
// 示例代码
ros::Rate r(100);
 
while (ros::ok())
{
   libusb_handle_events_timeout(...); // Handle USB events
   ros::spinOnce();                   // Handle ROS events
   r.sleep();
}

III. 最后说明一下将ROS集成到其他程序架构时的情况。有些图形处理程序会将main()包裹起来,此时就需要找到一个合理的位置调用ros::spinOnce()。比如对于OpenGL来说,其中有一个方法就是采用设置定时器定时调用的方法:

1
2
3
4
5
6
7
// 示例代码
void timerCb( int value) {
   ros::spinOnce();
}
 
glutTimerFunc(10, timerCb, 0);
glutMainLoop(); // Never returns

所以要想对一个系统架构游刃有余,必须了解底层API的基本运作形式,否则整个程序漏洞百出,自然不能按照预期执行。

【参考资料】

[1] wiki.ROS.org, “Significance of ros::spinOnce()”,http://answers.ros.org/question/11887/significance-of-rosspinonce/

 [2] http://blog.csdn.net/koupoo/article/details/8032525

ROS2(Robot Operating System version 2)是一个开源的机器人操作系统框架,它使用 DDS(Data Distribution Service)作为其底层通信机制。要在ROS2中订阅`sensor_msgs::msg::LaserScan`数据,并将其转换为`pcl::PointCloud`(Point Cloud Library),你需要编写一个节点(node)并使用相关的消息解析库如`rclcpp`和`pcl_ros`。 首先,确保已安装必要的依赖项: ```bash sudo apt-<your_robot_description_here>-ros-pcl ``` 然后,创建一个新的`src`目录,例如`my_laser_scan_node`, 在这里创建`laser_to_pcl_node.cpp`文件,添加以下内容: ```cpp #include <rclcpp/rclcpp.hpp> #include <sensor_msgs/msg/laser_scan.hpp> #include <pcl_conversions/pcl_conversions.h> #include <pcl/point_cloud.h> #include <pcl_ros/point_cloud.h> class LaserToPCLNode : public rclcpp::Node { public: explicit LaserToPCLNode(rclcpp::NodeOptions options) : Node("laser_to_pcl_node", options) { laser_sub_ = this->create_subscription<sensor_msgs::msg::LaserScan>( "scan", // 激光雷达扫描的主题名 rclcpp::QoS(rclcpp::的历史QoSPolicy(10)), // 储存最近10条消息 [this](const sensor_msgs::msg::LaserScan::SharedPtr msg) -> void { convert_and_publish(msg); }); } private: void convert_and_publish(const sensor_msgs::msg::LaserScan::SharedPtr msg) { pcl::PointCloud<pcl::PointXYZ> cloud; pcl::fromROSMsg(*msg, cloud); pcl_ros::publishPointCloud(cloud, "cloud", this->get_logger()); } private: rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr laser_sub_; }; int main(int argc, char ** argv) { rclcpp::init(argc, argv); LaserToPCLNode node; rclcpp::spin(node); rclcpp::shutdown(); return 0; } ``` 在这个例子中,我们创建了一个节点,订阅了名为"scan"的激光雷达扫描主题,然后在接收到新消息时将`sensor_msgs::msg::LaserScan`转换为`pcl::PointCloud<pcl::PointXYZ>`。最后,通过`pcl_ros`发布这个点云到新的主题"cloud"。 运行此程序前,请确保已在ROS2工作空间中配置了所有必需的包和服务,并启动相应的传感器节点以提供`sensor_msgs::msg::LaserScan`数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值