YOLOv8中加入使用三分支结构捕捉交叉维度交互来计算注意权重的注意力机制TripletAttention

13 篇文章 74 订阅
本文介绍了TripletAttention如何通过三分支结构融合自注意力、全局注意力和相对注意力,以增强YOLOv8的目标检测性能。在代码实现部分,详细说明了在YOLOv8框架中集成此机制的步骤。
摘要由CSDN通过智能技术生成

一、TripletAttention的简要介绍

TripletAttention注意力机制通过捕捉空间维度和输入张量通道维度之间的交互作用,解决通道注意和空间注意是分离的问题。使用三分支结构捕捉交叉维度交互来计算注意权重。

TripletAttention由三个不同的注意力机制组成,分别是自注意力机制(self-attention)、全局注意力机制(global-attention)和相对注意力机制(relative-attention)。这些机制可以同时学习序列中的全局上下文信息、相对位置信息和内部关系。

自注意力机制可以学习序列中不同位置之间的依赖关系,以及每个位置对整个序列的重要性。全局注意力机制可以学习序列中不同位置与其他序列之间的关系。相对注意力机制可以学习不同位置之间的相对位置关系。

T

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学yolo的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值