YOLOv8改进 更换轻量化模型MobileNetV3

一、MobileNetV3论文

论文地址:1905.02244.pdf (arxiv.org)

二、 MobileNetV3网络结构

MobileNetV3引入了一种新的操作单元,称为"Mobile Inverted Residual Bottleneck",它由一个1x1卷积层和一个3x3深度可分离卷积层组成。这个操作单元通过使用非线性激活函数,如ReLU6,并且在残差连接中使用线性投影,来提高网络的特征表示能力。

MobileNetV3使用全局平均池化层来降低特征图的维度,并使用一个1x1卷积层将特征图的通道数压缩成最终的类别数量。最后,使用softmax函数对输出进行归一化,得到每个类别的概率分布。

### MobileNetV3YOLOv8的集成方法 为了使MobileNetV3作为YOLOv8的目标检测网络中的骨干网,主要工作集中在模型架构调整上。具体而言,在YOLOv8框架内引入MobileNetV3结构来替代默认使用的CSPDarknet53或其他预设骨架[^2]。 #### 修改配置文件 首先需要编辑YOLOv8对应的`.yaml`配置文档,指定采用MobileNetV3作为新的backbone层: ```yaml # yolov8_custom.yaml example configuration file with mobilenetv3 backbone nc: 80 # number of classes depth_multiple: 0.33 width_multiple: 0.5 backbone: - [focus, [64, 3]] - [mobilenet_v3_large, []] # Inserting Mobilenet V3 large variant here ``` 上述代码片段展示了如何定义一个新的配置文件用于训练基于MobileNetV3YOLOv8版本。这里选择了较大的MobileNetV3变体(`mobilenet_v3_large`)以保持一定的精度水平。 #### 替换Backbone模块 接着要修改YOLOv8源码中负责构建基础特征提取器的部分,使得能够加载并初始化MobileNetV3权重参数。这通常涉及到对`models/yolo.py`或者其他相关脚本内的类定义做适当改动,确保能正确实例化MobileNetV3对象并与后续neck和head组件无缝对接。 ```python from models.common import Conv, SPPF, BottleneckCSP import torchvision.models as models class YOLOv8Custom(nn.Module): def __init__(self): super().__init__() self.backbone = models.mobilenet_v3_large(pretrained=True).features ... # Other layers like neck and head remain unchanged. ``` 这段Python代码说明了怎样创建自定义YOLOv8类,其中包含了来自PyTorch官方库的预训练MobileNetV3大型版作为主干部分。 通过以上两步操作即可完成基本的功能移植,不过实际应用时还需要考虑更多细节优化以及性能调优等问题。值得注意的是,由于两者的设计初衷不同,直接替换可能会带来一些兼容性挑战,因此建议深入研究两个模型的具体实现机制后再着手实施改造计划。
评论 119
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学yolo的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值