一、YOLOv9论文
论文地址:2402.13616.pdf (arxiv.org)
二、训练数据集
准备好自己的数据集并在yolov9-main/data下创建yaml文件:
格式如下:
train: D:/XX/XX/yolov9-main/XX/dataSet_path/train.txt
val: D:/XX/XX/yolov9-main/XX/dataSet_path/val.txt
test: D:/XX/XX/yolov9-main/XX/dataSet_path/test.txt
# number of classes
nc: XX
# class names
names: ["XX","XX"]
在train.py中设置
1是添加预训练的权重yolov9-c.pt,权重文件在github上下载。
2是训练模型的yaml文件位置
3是上一步创建的myvoc.yaml文件的位置
4把原本的hyp.scratch-low.yaml改成hyp.scratch-high.yaml
5总共的训练次数
6.7要是电脑内存有限,这两个参数调小一点
运行train.py并处理报错
到D:\Deeplearning\yolov9-main\utils\loss_tal.py中修改
在原本的else p后边加上[0]:
继续运行train.py可以看出已经成功开始训练。