点乘和叉乘的应用

点乘:两个向量点乘得到一个 标量 ,数值等于两个向量长度相乘后再乘以二者夹角的余弦值 。如果两个向量a,b均 为单位 向量 ,那么a.b等于向量b在向量a方向上的投影的长度
点乘后得到的是一个值
若结果 == 0,则 两向量 互相垂直 。
若结果 < 0  ,则 两向量夹角大于90°。
若结果 >0  , 则 两向量夹角小于 90°。
用点乘判断向量朝向关系
考虑到,cos(0)=1,cos(π)=-1,cos(π/2)=0,那么我们就可以用点乘来判断两个向量的朝向关系了。
π就是180度的实数表示。
如果两个向量方向完全相同,那么夹角为0,则cos(θ)为1;
如果两个向量方向垂直,那么夹角为90度即π/2,则cos(θ)为0;
如果两个向量方向完全相反,那么夹角为180度即π,则cos(θ)为-1;
其他情况,点乘的值介于-1~1之间。

叉乘:两个向量的叉乘得到一个新的向量 ,新向量垂直于原来的两个向量再乘夹角的正弦值 
叉乘后得到的还是一个 向量

在unity3D里面。两个向量的点乘所得到的是两个向量的余弦值,也就是-1 到1之间,0表示垂直,-1表示相反,1表示相同方向。
两个向量的叉乘所得到的是两个向量所组成的面的垂直向量,分两个方向。
简单的说, 点乘判断角度,叉乘判断方向。
形象的说当一个敌人在你身后的时候,叉乘可以判断你是往左转还是往右转更好的转向敌人,点乘得到你当前的面朝向的方向和你到敌人的方向的所
成的角度大小。
向量点乘叉乘都是向量运算,但它们有不同的定义和应用。 向量的点乘(又称为内积或数量积)是两个向量的乘积再求和,其结果是一个标量。点乘的定义为: $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ 其中,$\vec{a}=(a_1,a_2,a_3)$和$\vec{b}=(b_1,b_2,b_3)$是两个三维向量。 点乘的几何意义是:$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$,其中$\theta$是$\vec{a}$和$\vec{b}$之间的夹角,$|\vec{a}|$和$|\vec{b}|$分别是$\vec{a}$和$\vec{b}$的模。点乘的结果可以用来计算向量的长度、判断两个向量是否垂直或平行、计算向量之间的夹角和投影等。 向量的叉乘(又称为外积或向量积)是两个向量的乘积得到另一个向量,其结果是一个向量。叉乘的定义为: $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2 b_3 - a_3 b_2) \hat{i} + (a_3 b_1 - a_1 b_3) \hat{j} + (a_1 b_2 - a_2 b_1) \hat{k}$ 其中,$\hat{i}$、$\hat{j}$和$\hat{k}$是三个基向量,$\vec{a}=(a_1,a_2,a_3)$和$\vec{b}=(b_1,b_2,b_3)$是两个三维向量。 叉乘的几何意义是:$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta \hat{n}$,其中$\theta$是$\vec{a}$和$\vec{b}$之间的夹角,$|\vec{a}|$和$|\vec{b}|$分别是$\vec{a}$和$\vec{b}$的模,$\hat{n}$是垂直于$\vec{a}$和$\vec{b}$所在平面的单位向量。叉乘的结果可以用来计算向量之间的夹角、计算面积和体积、判断向量之间的方向等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值