Guiding Computational Stance Detection with Expanded Stance Triangle Framework基于扩展立场三角框架导向计算立场检测 翻译

2023ACL

摘要

立场检测可以确定一段文本的作者是支持、反对还是对特定目标保持中立,并且可以用来获得对社交媒体的有价值的见解。无处不在的目标间接引用使得这项任务具有挑战性,因为它需要计算解决方案来建模语义特征并从文字语句中推断相应的含义。此外,有限的可用训练数据会导致域外和跨目标场景中的性能低于标准,因为数据驱动的方法容易依赖于表面和特定于领域的特征。在这项工作中,我们从语言学的角度分解了立场检测任务,并研究了该任务中的关键组件和推理路径。立场三角是一个通用的语言框架,用来描述人们表达立场的基本方式。我们通过描述显式和隐式对象之间的关系来进一步扩展它。然后,我们使用该框架用附加注释扩展单个训练语料库。实验结果表明,策略丰富的数据可以显著提高域外评估和跨目标评估的性能。

1引言

立场(及其变体立场采取)是一个概念,被定义为一种语言上表达的社会行动形式,其意义在语言、互动和社会文化价值中得到解释(Biber和Finegan, 1988;Agha, 2003;杜波依斯,2007;Kiesling, 2022)。它的主语可以是谈话中的说话人,也可以是社交媒体帖子的作者,它的宾语可以是实体、概念、想法、事件或主张。

自然语言处理中的立场检测任务旨在预测一段文本对指定目标的立场。立场检测通常被表述为一个分类问题(kk和Can, 2020),通常用于分析在线用户生成的内容,如Twitter和Facebook帖子(Mohammad et al., 2016;Li等人,2021)。当给定文本和一个指定的目标(即,立场对象)时,分类器用于预测分类标签(例如,赞成,反对,无)。随着社交网络平台对我们生活的影响越来越大,立场检测对于各种下游任务(如事实验证和谣言检测)至关重要,广泛应用于分析用户反馈和政治观点(Glandt et al., 2021)。例如,在2019冠状病毒病大流行期间,了解公众对各种举措和关切的意见至关重要,例如接种加强疫苗和戴口罩。从立场分析中获得的见解可以帮助公共卫生组织更好地估计其任务的预期效力,并在病毒严重复发之前主动发现大流行疲劳。

虽然通过采用数据驱动的神经方法,特别是利用最近的大规模语言主干,在文本分类上取得了最先进的结果(Devlin等人,2019;Liu et al., 2019基于方面的情感分析),立场检测仍然具有挑战性;人类和机器的表现有很大的差距一个挑战来自于无处不在的目标立场对象的间接引用。在网络社交互动中,人们表达主观态度的方式简洁多样,往往不直接提及最终目标,而是提及与之相关的实体、事件、概念或主张。如表1所示的示例,与基于方面的情感分析(方面术语通常在句子中明确陈述)不同,为立场标记指定的目标可以灵活分配。例如,在一条关于COVID-19的推文中,虽然没有提到“福奇博士”,但可以从“戴口罩”和“科学”的支持中推断出用户代表他。因此,目标感知上下文理解需要捕获显式提到的对象和各种目标之间的关系,但现有模型缺乏这种能力。

另一个挑战来自立场检测的有限注释数据。当在由来自单个领域的少量目标构建的语料库上进行训练时,数据驱动方法不能很好地泛化域外样本未见目标(Allaway和Mckeown, 2020;Kaushal et al., 2021)。同时,由于数据多样性低和单一目标标记导致的虚假相关,模型容易在表面和有偏见的特征(如情绪相关词汇)上过度拟合。观察到强基线仅依赖于输入文本(例如推文),但忽略了指定的目标(Ghosh等人,2019;Kaushal et al., 2021),当我们改变目标对象时,无法做出正确的预测。如图1所示,分类器总是产生相同的输出Favor,即使指明了“CD Disk”等不相关的目标。

在这项工作中,我们从语言学的角度探讨了上述挑战的解决方案。语用学和语言学的研究为我们提供了关于人类如何采取立场的详细理论(Du Bois and Kärkkäinen, 2012;Kiesling等人,2018),并帮助我们确定立场分析的关键组件和推理路径。“立场三角”(Du Bois, 2007)是最具影响力和通用的语言框架之一。

如图1所示,它呈现了三种站位行为:主体(即立场持有者)评估一个对象,定位自己和他人,并与其他主体对齐。虽然该模型涵盖了立场的重要方面,但其广泛性使立场在实际用例中的可操作性没有得到明确规定(Kiesling, 2022)。在社交网络平台的立场分析中,对目标的含义进行建模是很重要的,但在三角框架中并没有很好的表述。因此,我们通过描绘显式和隐式对象之间的关系来扩展它,并勾勒出两条路径来完成类人推理。除了使用扩展的框架进行定性分析外,我们还进一步利用它进行战略注释丰富,这显示了提高数据驱动方法的鲁棒性和通用性的强

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值