【bioinformation 3】人工智能与肿瘤靶点识别

本文探讨了人工智能在肿瘤疾病中的应用,包括肿瘤靶点识别的概述、建模方法(如转录组、单细胞转录组、表观遗传模型),以及多模态分析和靶点发现。文章强调了AI在处理大规模异构数据、识别模式以及个性化治疗策略中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🌞欢迎来到AI的世界 
🌈博客主页:卿云阁

💌欢迎关注🎉点赞👍收藏⭐️留言📝

🌟本文由卿云阁原创!

📆首发时间:🌹2024年3月12日🌹

✉️希望可以和大家一起完成进阶之路!

🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!


目录

人工智能与肿瘤靶点识别概述

肿瘤疾病介绍与治疗

人工智能与肿瘤建模

人工智能与肿瘤转录组模型

肿瘤转录组异质性

人工智能与单细胞转录组数据分析

人工智能与单细胞表观肿瘤模型

人工智能与基于染色质可及性的肿瘤表观遗传模型

人工智能与多模态肿瘤模型

基于多组学的肿瘤研究模式

人工智能与多组学数据建模

人工智能与靶点识别

人工智能与基于表观的靶点发现


人工智能与肿瘤靶点识别概述

肿瘤疾病介绍与治疗

    在我们人体中无时无刻都在进行细胞分裂,这一过程收细胞核控制。在细胞核内部DNA指导这一过程的发生。人体由数万亿个细胞组成,癌症可以发生在人体的任何部位。通常人体细胞生长、分裂并形成新生细胞,来满足机体需要。当细胞衰老或损伤时,细胞就会死亡,然后由新生细胞取代。但是,癌症的发生终止了这一有序的过程。随着细胞变得越来越异常,这些本该死亡的、衰老或受损的细胞继续存活,并且形成新生细胞,这些多余的新生细胞会持续分裂并形成肿瘤。

靶点的意思是:与药物特异性结合的生物大分子的统称。

     靶点的种类主要有受体、酶、离子通道和核酸,存在于机体靶器官细胞膜上或细胞质内。迄今为止所发现的药物作用靶点总数约为500个左右,其中还不包括抗菌、抗病毒等作用靶点,其中受体尤其是G蛋白偶联受体靶点占据绝大多数。

靶点的分类:

(1)以受体为靶点:药物与受体结合才能产生药物效应,理想的药物必须具有高度的选择性和特异性。选择性即要求药物对某种病例状态产生稳定的功效,而特异性是指药物仅与疾病治疗相关联的受体或者受体压型结合。

(2)以酶为靶点:由于酶是催化生成或灭活一些生理反应的介质和调控剂,因此,酶构成了一类重要的药物作用靶点。酶抑制剂通过抑制某些代谢过程,降低酶促反应产物的浓度而发挥其药理作用。

(3)以离子通道为靶点:带电荷的离子通过离子通道进出细胞,来传输信息从未介导细胞正常的生命活动,是人类生命过程的重要组成部分。

(4)以核酸为靶点:人们普遍认为肿瘤的癌变是由于基因突变导致基因表达失调和细胞无限增殖所引起的,因此可将癌基因作用药物设计的作用靶点,利用反义技术抑制癌细胞的增殖。


 

    肿瘤药物研发是人工智能(Artificial intelligence, AI)的重要应用场景。靶点识别是肿瘤药物研发的关键抓手。人工智能为基于组学数据的肿瘤靶点识别提供了强大的计算工 具。人工智能,更具体地说是机器学习(Machine learning, ML)分支, 可以处理大规模异构数据集,并识别出数据中的潜藏模式。目前,决策树、支持向量机等众多人工智能模型均已广泛应用到了组学数据建模和肿瘤靶点识别中。


人工智能与肿瘤建模

人工智能与肿瘤转录组模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卿云阁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值