车辆检测”Learning to Detect Vehicles by Clustering Appearance Patterns“

在KITTI上做车辆检测,排名比较靠后的一种方法,有源码,代码可直接训练和检测,用ACF和boost做的。

项目主页:http://cvrr.ucsd.edu/eshed/

主要思想是在训练之前对训练数据进行聚类,就像DPM有多个component,作者分析了用于聚类的一些特征,如视觉特征RGB,LUV,Gradient,CNN等,几何特征3D方向,长宽比,截断等级,遮挡等级等。

训练过程如下图所示:
这里写图片描述

聚类方法是k-means,下图显示了对几种特征的空间分布使用t-SNE投影到二维的显示。
这里写图片描述

训练参数与ACF的类似,另外作者做实验说明了多分辨率模型能够提升检测率,即模型大小为32,48,etc。

在KITTI上与其他方法的对比:
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值