车辆检测”Learning to Detect Vehicles by Clustering Appearance Patterns“

介绍一种在KITTI数据集上的车辆检测方法,通过聚类训练数据并采用多分辨率模型提高检测精度。
摘要由CSDN通过智能技术生成

在KITTI上做车辆检测,排名比较靠后的一种方法,有源码,代码可直接训练和检测,用ACF和boost做的。

项目主页:http://cvrr.ucsd.edu/eshed/

主要思想是在训练之前对训练数据进行聚类,就像DPM有多个component,作者分析了用于聚类的一些特征,如视觉特征RGB,LUV,Gradient,CNN等,几何特征3D方向,长宽比,截断等级,遮挡等级等。

训练过程如下图所示:
这里写图片描述

聚类方法是k-means,下图显示了对几种特征的空间分布使用t-SNE投影到二维的显示。
这里写图片描述

训练参数与ACF的类似,另外作者做实验说明了多分辨率模型能够提升检测率,即模型大小为32,48,etc。

在KITTI上与其他方法的对比:
这里写图片描述

编写一个车辆检测函数`detect_vehicles(frame)`通常涉及到图像处理和计算机视觉中的目标检测技术。这里我们可以使用OpenCV库和预训练的模型,如YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)。这些模型能够识别图像中的物体,包括车辆。 以下是一个简单的例子,假设我们已经有了一个已经训练好的车辆检测模型: ```python import cv2 import numpy as np class VehicleDetector: def __init__(self, model_path): self.model = cv2.dnn.readNetFromDarknet(model_path, "model.cfg") self.classes = ["vehicle"] # 假设我们的模型只识别车辆 def detect_vehicles(self, frame): # 将图片从BGR转换为RGB,因为dnn模块默认是BGR frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 设置输入blob blob = cv2.dnn.blobFromImage(frame_rgb, 1/255.0, (416, 416), swapRB=True, crop=False) # 运行模型进行前向传播 self.model.setInput(blob) detections = self.model.forward() # 解析输出并找到车辆 vehicles = [] for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > 0.5: # 阈值可以根据实际需求调整 class_id = int(detections[0, 0, i, 1]) if class_id == self.classes.index("vehicle"): box = detections[0, 0, i, 3:7] * np.array([frame.shape[1], frame.shape[0], frame.shape[1], frame.shape[0]]) (x, y, w, h) = box.astype("int") vehicles.append((x, y, x+w, y+h)) # 返回车辆的边界框坐标 return vehicles # 使用示例 detector = VehicleDetector("path_to_your_model.weights") # 替换为你的模型路径 frame = cv2.imread("image.jpg") # 替换为你要检测的图片路径 detected_vehicles = detector.detect_vehicles(frame) ``` 在这个例子中,`detect_vehicles`函数首先读取一张图像,然后通过网络模型运行前向传播得到每个可能的目标的预测结果。如果检测到的车辆(即class_id等于"vehicle")的置信度高于某个阈值,就将其边界框添加到`vehicles`列表中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值