LASSO与Item Response Theory模型中的隐变量选择
这是Latent Variable Selection for Multidimensional Item Response Theory Models via L1 Regularization的简单介绍。
Item Response Theory简介
在心理学中,有很多用于测量个人特质(trait)与dichotomous-response、polytomous-response item(就是用一些二选或者多选的问题来看被试者在一些具体场景中的反应)的量表和实验,基于这些量表与实验的测量结果,心理学家可以发掘item-trait之间的关系。
下面是几个二选的例子(如何应对坏男人)

下面是两个多选问题的例子(gender-orientation的测试)


统计模型
Item Response Theory (IRT)就是很常用的描述item-trait relation的统计模型。用 θ = ( θ 1 , ⋯ , θ K ) T \theta=(\theta^1,\cdots,\theta^K)^T θ=(θ1,⋯,θK)T表示被试者的特质向量(这个是不可测量的),每一个分量表示被试者的一种潜在特质;考虑 J J J个二选题组成的量表,用 Y j Y_j Yj表示被试者对第 j j j个问题的回答,假设我们讨论两参数模型
P ( Y j = 1 ∣ θ ) = F ( a j T θ + b j ) P(Y_j=1|\theta)=F(a_j^T\theta+b_j) P(Yj=1∣θ)=F(ajTθ+bj)
其中 a j = ( a j 1 , ⋯ , a j K ) T a_j=(a_{j1},\cdots,a_{jK})^T aj=(aj1,⋯,ajK)T, F ( ⋅ ) F(\cdot) F(⋅)是一个累积分布函数,定义
A = ( a 1 , ⋯ , a J ) , b = ( b 1 , ⋯ , b J ) T A = (a_1,\cdots,a_J),b=(b_1,\cdots,b_J)^T A=(a1,⋯,aJ),b=(b1,⋯,bJ)T
称 a j a_j aj为discrimination parameter vector, b j b_j bj为difficulty parameter。如果 a j k ≠ 0 a_{jk} \ne 0 ajk=0,就可以认为特质 k k k在被试者对第 j j j个问题做出1的回应中起到了一定作用。于是,为了构建特质与被试者在不同情景中的反应之间的关系,我们希望找出在被试者对每一个问题做出回应的过程中起作用的那些特质,这个正是variable selection可以解决的。正式描述的话就是我们希望估计一个0-1矩阵
Λ = ( λ j k ) J × K , λ j k = I a j k ≠ 0 \Lambda=(\lambda_{jk})_{J \times K}, \lambda_{jk}=I_{a_{jk} \ne 0} Λ=</

本文介绍了使用L1正则化的LASSO方法在多维项目反应理论(IRT)模型中进行潜在特质选择的过程。通过LASSO,可以识别在被试者对不同问题反应中起作用的特质。文章涵盖了两参数模型的LASSO估计,BIC调参策略,并简要提及了EM算法在潜变量选择中的应用。
最低0.47元/天 解锁文章
1440

被折叠的 条评论
为什么被折叠?



