关闭

三维重建面试13:点云的局部特征总结

三维场景中物体检测也可以使用特征点方法+词包方法的通用框架。其中BOW方法是无差别的,特征点方法与二维图像不同的是点云的数据格式问题,一般表示为对点云曲面进行特征提取。可以使用基于八叉树的方法进行特征点提取,也可以使用深度Map图的方法或有序点云方法进行特征点提取。            注意事项:若使用有序点云方法,希望注意点云的连贯性,在断开的地方可以使用特殊的特征计算方法,避开深度断开位置...
阅读(183) 评论(0)

三维重建面试15:动态相机参数标定

对单个相机进行标定,一般使用标定法:相机标定-解决多点透视问题 。对空间中多点进行采样,得到相机的外参矩阵。如果想得到更准确的相机外参,建议在空间的不同位置,进行多次空间采样,进行分批次的相机标定,得到视野各处的相机外参。...
阅读(205) 评论(0)

三维重建面试12:室内三维物体的位姿识别论文列表

四年前的论文列表拿出来,用来怀念一下。 在三维目标位姿识别的通路搭建过程中,使用到了下面列举的论文,其他使用到的方法相关性不是特别强,因此暂时没有列举出来。其中,有些论文没卵用,只是用来灌水的,看一下即可,不用深究。...
阅读(408) 评论(0)

三维重建面试11:点云的全局特征总结

点云的检测和分类一般使用全局特征,传统的检测方法严重依赖于点云的场景分割,所幸的是点云的分割一般情况下比二维灰度图像和彩色图像更容易进行。基于分割方法的好处是,一旦目标被正确分割,点云分类即可以转换为较为简单的有遮挡或无遮挡的点云(位姿)识别。此时的分类,即点云识别可以使用Alignment的方法,也可以使用位姿识别方法。...
阅读(471) 评论(0)

三维重建面试10:点云配准和点云匹配

点云的匹配一般使用ICP方法( ICP:Iterative Closest Point迭代最近点),即两个点云纯粹通过刚体位姿变换即可大致重合。 若找稠密/稀疏点的匹配关系,ICP算法即简化成一个最小二乘问题,可以通过解方程的方法得到解析解,使用优化方式求解则可以得到全局最优解。若没有匹配关系,纯粹的迭代最近点方法也能得到一个极值结果,但不一定是最优的。...
阅读(381) 评论(0)

三维重建面试9:点云图像的滤波方法小结

PCL常规滤波手段均进行了很好的封装。对点云的滤波通过调用各个滤波器对象来完成。主要的滤波器有直通滤波器,体素格滤波器,统计滤波器,半径滤波器 等。不同特性的滤波器构成了较为完整的点云前处理族,并组合使用完成任务。实际上,滤波手段的选择和采集方式是密不可分的。...
阅读(265) 评论(0)

三维重建面试8:点云图像的滤波方法

点云数据是三维空间的离散数据,不是类似于PLY格式的点线概念,因此可以使用所谓的“滤波方法”。点云数据若非看成深度map数据,则不再适用于使用二维图形的核卷积方法。此外,滤波方法与点云存储格式密切相关,点云存储格式一般为八叉树,而2.5D图像存储格式可以用深度Map形式,对应了不同的滤波方式。 实际意义上的点云滤波,是以三维点集的思维方面寻找方法,因此点云滤波依赖于几何信息,而不是数值关系。在滤波思想上,本质上三维点云X、Y、Z的思想方法权重应该是一致的。...
阅读(341) 评论(0)

三维重建面试7:Visual SLAM算法笔记

此文是一个好的视觉SLAM综述,对视觉SLAM总结比较全面,是SLAM那本书的很好的补充。介绍了基于滤波器的方法、基于前后端的方法、且介绍了几个SensorFusion方法,总结比较全面。...
阅读(688) 评论(0)

三维重建面试6:绑架问题/SensorFusion/IMU+CV-小尺度SLAM

机器人的“绑架”问题是指在缺少它之前的位置信息情况下,去确定机器人的当前位姿,例如当机器人被安置在一个已经构建好地图的环境中,但是并不知道它在地图中的相对位置,或者在移动过程中,由于传感器的暂时性功能故障或相机的快速移动,都导致机器人先前的位置信息的丢失,就像人质的眼睛被蒙上黑布条,拉上集装箱被运送到了未知的地方,此时,人质就无法给自己定位了。...
阅读(551) 评论(0)

三维重建面试5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM

在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题 和三维重建:SLAM的粒度和工程化问题 。大规模三维场景重建的尺度增大,因此相对于整个重建过程的粒度也从点到特征点到目标物体级别,对场景进行语义标记成为重要的工作。...
阅读(646) 评论(0)

三维重建面试4:Jacobian矩阵和Hessian矩阵

在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式.。还有, 在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中. 在数学中, 海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,Hessian矩阵的要求是函数f对所有变量Xi的所有二阶导数都存在。...
阅读(272) 评论(0)

三维重建面试3:如何形象地理解四元数

各种位姿变换都有其特定的缺陷,使用旋转矩阵在变换角为0或者pi/2时会出现病态矩阵,使用欧拉角容易出现万向锁,使用四元数可以降低位姿变换-旋转平移运算的计算量。 比如:两个正交旋转矩阵的复合需要27次乘法和18次加法,而通过四元数的形式只需要16次乘法和12次加法,降低1/3的计算量。但是四元数的不可交换性,往往导致令人意外的结果。...
阅读(214) 评论(0)

三维重建面试2: 地图构建-三角测量

在三维重建过程中,如果使用了IMU-惯导系统,一般可以得到一个大致可信的相机位姿转换。基于IMU短时间可信的原则,重建问题着重在地图的构建问题,即根据图像来获取点集的空间位置(六自由度),重要的一点的是获取深度信息。...
阅读(314) 评论(0)

三维重建面试1-位姿追踪:单应矩阵、本质矩阵和基本矩阵

本文所写与原文相距甚远,如有疑问,请拜访原文。 原文链接:单应矩阵Homograph matrix、本质矩阵Fundamental matrix、基本矩阵essential matrix 根据图像来估计位姿,一般称之为位姿追踪。非退化状态下可是根据匹配点求解Essential Matrix ,退化状态下课根据匹配点来求解 Homograph Matrix。用于实时计算位姿。...
阅读(645) 评论(0)

三维重建面试0:*SLAM滤波方法的串联综述

此文分析了多个基于滤波方法的SLAM算法原理联系。从KF到EKF UKF PF 到BA方法。...
阅读(360) 评论(0)

ROS:ubuntuKylin17.04-Ros使用OrbSLAM2

忙于图像处理和DCNN,很长时间不使用ROS,重新安装系统后,再次使用ORB-SLAM2(ROS)进行三维重建和实时追踪的演示。 参考以前的文章:ROS:ubuntu-Ros使用OrbSLAM...
阅读(246) 评论(0)

ROS:使用ubuntuKylin17.04安装ROS赤xi龟

使用ubuntuKylin17.04可以成功的安装ROS赤xi龟。...
阅读(1195) 评论(0)

三维重建:闭环检测

还是不要看了,高翔的科普读物已经出版了,读他的《slam十四讲》就可以了。 三维重建过程中,滤波方法可以看做是一种追踪方法。EM方法的长期使用造成在相对整个世界坐标系中累计误差的指数级增长。若是检测到可信的闭环,闭环之内的标记帧的位姿可以全部进行误差矫正,重新调整在世界坐标系中的位置。...
阅读(801) 评论(0)

三维重建:SLAM相关的一些术语解释

还是不要看了,高翔的科普读物已经出版了,读他的《slam十四讲》就可以了。 SLAM是一个工程问题,再次复习一下工程中可能用到的名词解释。...
阅读(695) 评论(0)

SLAM:飞行机器人的参数解析-分类

在水电站存在的山区,公路运输效率极低,盘山公路绕行消耗大量时间,使用飞行机器人进行运输是合适的选择。...
阅读(394) 评论(0)
88条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:831588次
    • 积分:11586
    • 等级:
    • 排名:第1421名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条