关闭

CNN结构:用于检测的CNN结构进化-一站式方法

人眼能够快速的检测和识别视野内的物体,基于Maar的视觉理论,视觉先识别出局部显著性的区块比如边缘和角点,然后综合这些信息完成整体描述,人眼逆向工程最相像的是DPM模型。 YOLO的特别之处,在于把检测问题表示为一个分类问题,而不是以往的寻找绑定框/包围盒+分类的问题。使用一个网络实现检测的功能,成为一个端到端的图像检测系统。...
阅读(295) 评论(0)

CNN结构:用于检测的CNN结构进化-分离式方法

基于CNN的目标检测框架主要有两种:一种是 one-stage ,例如 YOLO、SSD 等,这一类方法速度很快,但识别精度没有 two-stage 的高,其中一个很重要的原因是,利用一个分类器很难既把负样本抑制掉,又把目标分类好。 另外一种目标检测框架是 two-stage ,以 Faster RCNN 为代表,这一类方法识别准确度和定位精度都很高,但存在着计算效率低,资源占用大的问题。...
阅读(135) 评论(0)

Metric Learning度量学习:**矩阵学习和图学习

ML的两条主要路线,从样本中学习一个度量,或者使用样本训练一个网络。 一篇metric learning(DML)的综述文章,对DML的意义、方法论和经典论文做一个介绍,同时对我的研究经历和思考做一个总结。可惜一直没有把握自己能够写好,因此拖到现在。先;列举一些DML的参考资源,以后有时间再详细谈谈。...
阅读(1692) 评论(0)

C++版的LLC代码

ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的image classification),重点都在于如何由SIFT、HOG形成图像的特征(见图1)。...
阅读(440) 评论(0)

图像局部显著性—点特征(SIFT为例)

基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测。探测到的主要特征为直觉上可刺激底层视觉的局部显著性——特征点、特征线、特征块。 几个主要的特征点算法年代发展表: 1. 1999年的SIFT(ICCV 1999,并改进发表于IJCV 2004); 2. 2005年的GLOH(2005年的PAMI期刊); 3. 2006年的SURF(2006年的ECCV); 4. 2010年的Brief特征(ECCV2010 ); 5. 2011年的brisk算法(ICCV2011);...
阅读(7288) 评论(2)

搜索引擎的查询意图识别(关联分析)

通用搜索VS垂直搜索: 通用搜索特点: 抓取互联网上一切有价值的页面,同意建立索引,以关键字匹配为基本检索方式,以网页title和summary为展现方式 google, 百度,搜狗,搜搜,有道 垂直搜索特点: 以一特定类别为主题,只抓取与主题相关信息,根据主题特点有针对性的建立相应的索引检索方式,筛选方式,以及展现方式 机票搜索,地图搜索,购物搜索...
阅读(1214) 评论(0)

基于物品的协同过滤ItemCF的mapreduce实现

基于物品的协同过滤ItemCF 数据集字段: 1.  User_id: 用户ID 2.  Item_id: 物品ID 3.  preference:用户对该物品的评分 算法的思想: 1.  建立物品的同现矩阵A,即统计两两物品同时出现的次数...
阅读(554) 评论(0)

ML大杂烩:**常见机器学习算法公式梳理

找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个。本文写出常见데机器学习데公式表示:1.朴素贝叶斯;2. 决策树;3.Logisitic回归;4. 线性回归 ; 5.KNN算法 ;6. SVM算法; 7.Boosting算法; 8. 聚类公式; 9. 10. pLSA 浅语义分析-SVD分解; 11.LDA-隐式狄利克雷; 12. GBDT ;13. 正则化; 14.离群点检测; 15.EM算法 ; 16. Apriori关联分析; 17.F...
阅读(3199) 评论(0)

图像特征综述

图像特征提取为一个稳定哈希过程,特征提取的有效性取决于样本本身데分布和样本集데大小。...
阅读(745) 评论(0)

CaptCha的现状与未来

“验证码”( CAPTCHA )其实并不是各位网友总是在不同网站上看到的难以辨认的字母组合的代名词,而是“全自动区分计算机和人类的图灵测试”的俗称,顾名思义,它的作用是区分计算机和人类。...
阅读(583) 评论(0)

相似图像识别检 —基于图像签名(LSH)

参考:人工智能,一种现代方法 第 617页,且原始论文给出了完整的证明过程。在ANN方法中,LSH算一种可靠的紧邻算法。少量检索使用KNN、大量检索使用K-Dtree、海量检索使用LSH,超海量检索使用.........
阅读(1060) 评论(0)

BOW模型在ANN框架下的解释

Bag of words模型(简称BOW)是最常用的特征描述的方法了。在图像分类和检索的相关问题中,能够将一系列数目不定的局部特征聚合为一个固定长度的特征矢量,从而使不同图像之间能够进行直接比较。BOW的改进方法包括一些稀疏的编码方式(如llc),kernel codebooks等,使得BOW一般作为benchmark被比较。然而,BOW往往作为一种编码方式被解释着(SIFT作为coding,BOW作为average pooling),在这里,我会从一个近似最近邻(approximate nearest n...
阅读(632) 评论(0)

图像检索中为什么仍用BOW和LSH

BOW在检索时好于LSH,那么为什么不在任何时候都用BOW代替LSH呢? 既然ScSPM,LLC等新提出的方法一致地好于BOW,那能否直接用这些稀疏模型代替BOW来表示图像的特征? 粗略想了一下,心中逐渐对这两个问题有了答案。这篇博文我就试图在检索问题上,谈一谈Bag-of-words模型与LSH存在的必要性。...
阅读(812) 评论(0)

综述:基于内容的三维形状检索

第二章给出3D形状表示技术的综述。 第三章介绍形状相似度和匹配的概念。 第四章介绍相似度匹配和模型检索中的3D形状描述方法。 第五章介绍3D形状搜索引擎的整体结构及各部分子系统。 第六章给出3D形状检索系统的评价和性能描述。...
阅读(2085) 评论(0)

实践:使用FLANN.LSH进行检索

OpenCV的FLANN库相对于原始FLANN库功能较少;比如不能直接使用flann::Matrix   data ();...
阅读(2523) 评论(0)

决策树:特征分布空间划分方法

如何快速而准确地找到查询点的近邻,不少人提出了很多高维空间索引结构和近似查询的算法。 一般说来,索引结构中相似性查询有两种基本的方式: 一种是范围查询,范围查询时给定查询点和查询距离阈值,从数据集中查找所有与查询点距离小于阈值的数据 另一种是K近邻查询,就是给定查询点及正整数K,从数据集中找到距离查询点最近的K个数据,当K=1时,它就是最近邻查询。...
阅读(1756) 评论(0)

***K近邻Survey-Distance总结

从K近邻算法、距离度量谈到KD树、SIFT+BBF算法:一个人坚持自己的兴趣是比较难的,因为太多的人太容易为外界所动了,而尤其当你无法从中得到多少实际性的回报时,所幸,我能一直坚持下来。毕达哥拉斯学派有句名言:“万物皆数”,最近读完「微积分概念发展史」后也感受到了这一点。同时,从算法到数据挖掘、机器学习,再到数学,其中每一个领域任何一个细节都值得探索终生,或许,这就是“终生为学”的意思。...
阅读(958) 评论(0)

Approximate Nearest Neighbors.接近最近邻搜索

Approximate Nearest Neighbors为接近最近邻搜索,是查找准确度和查找时间데平衡。本文大致介绍了,K决策树、헤一些哈希方法。...
阅读(1574) 评论(0)

混合推荐系统 类型

混合推荐系统是推荐系统的另一个研究热点,它是指将多种推荐技术进行混合相互弥补缺点,从而可以获得更好的推荐效果。 最常见的是将协同过滤技术和其他技术相结合,克服cold start的问题。 (1)加权型(2)转换型(3)合并型(4)特征组合(5)瀑布型(6)特征递增型(7)元层次型...
阅读(654) 评论(0)

open source project for recommendation system

目前互联网上所能找到的知名开源推荐系统(open source project for recommendation system),并附上了个人的一些简单点评(未必全面准确): SVDFeature,上大C++语言;Crab是基于Python;CofiRank,C++开发;EasyRec=Java开发;Graphlab基于C++分布graph;Mahout知名度很高....................
阅读(905) 评论(0)
29条 共2页1 2 下一页 尾页
    个人资料
    • 访问:822439次
    • 积分:11482
    • 等级:
    • 排名:第1438名
    • 原创:280篇
    • 转载:282篇
    • 译文:28篇
    • 评论:180条