关于RAG、LLM、AI Agent、Prompt的关联和差异

一、RAG:检索增强生成
RAG 是 retrieval-Augmented Generation 的缩写,即检索增强生成。从字面意思理解,它主要增强搜索和检索的能力,力求 “找得更准”。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

  • 案例:在智能客服领域,当用户提出问题时,RAG 可以快速从知识库中检索出相关信息,并结合生成技术给出更准确的回答。
    RAG 通过专项学习具体的向量来增强结果,目前在企业知识库中应用广泛。同时,它能在一定程度上限制大模型回答问题时产生的幻觉。RAG 是一种基于 LLM 的增强优化方案,在具体场景中可解决特定问题。

二、LLM:大语言模型
LLM:Large Language Model,即大语言模型,但我们知道 RAG 是基于 LLM 的。LLM 作为语言模型基础,为 RAG 等技术提供了支撑。

  • 案例:例如 OpenAI 的 GPT 系列就是一种强大的 LLM,它可以生成自然流畅的文本。
    LLM 的不断发展和进步,也推动着人工智能领域的创新。

三、AI Agent:

智能体解决复杂业务AI Agent 如同一个智能体,通过 AI 的基础能力搭建而成,能解决复杂的业务问题。

关于单Agent 和多Agent

现场日常垂直场景单Agent基本已经能够解决,关于多Agent,我和豆包的同学聊过这个话题,好像在创新场景比如搭建游戏的npc或者大型项目用Agent之间协作更合适一点,多agent下,变量的不确定性会增强;

  • 案例:比如在电商领域,一个智能客服 agent 可以通过与用户的交互,了解用户需求,然后调用不同的服务模块,如商品推荐、订单查询等,为用户提供全方位的服务。
    它可以由工作流、prompt 工程等共同组织,确保多节点问题的解决。在复杂业务中,多个 agent 可共同协作。

  • 案例:例如在 coze 上搭建的旅游规划方案智能体,能通过查询天气、日历、航班等给出旅游方案,且可调整节点输入得到不同答案。与仅用 prompt 输入相比,AI Agent 在处理复杂任务时更具优势。

四、Prompt 工程与 AI Agent 的关系
Prompt 是输入给大模型的提示词,有固定格式,可引导大模型输出方向。

  • 案例:比如在图像生成领域,通过输入特定的 prompt,如 “一只可爱的小猫咪在花园里玩耍”,可以让图像生成模型生成相应的图像。
    使用 prompt 还是 AI Agent 取决于任务的复杂程度。简单单节点任务可用 prompt,而复杂任务则需 AI Agent。AI Agent 能自动化解决流程范式,控制大模型结果更准确。相比之下,仅用 prompt 控制结果时,“幻觉” 影响大,结果确定性不足。AI Agent 就像综合战士,可携带各种装备对抗问题,还能复制、组合,采用团队组合战术。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### LangChain中AgentRAG模式的实现与应用 #### Agent 的定义与功能 在 LangChain 中,Agent 是一种用于自动化任务处理的核心模块。它通过结合语言模型 (LLM) 工具集来完成复杂的多步操作。Agent 可以接收用户的自然语言输入并解析成一系列动作,调用外部 API 或数据库查询等功能模块,最终返回结果给用户[^1]。 以下是创建一个简单 Agent 的代码示例: ```python from langchain.agents import initialize_agent, Tool from langchain.llms import OpenAI from langchain.tools import BaseTool class ExampleTool(BaseTool): name = "example_tool" description = "An example tool that returns a fixed response." def _run(self, query: str) -> str: return f"Response to {query}" llm = OpenAI(temperature=0) tools = [ExampleTool()] agent_chain = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) result = agent_chain.run("What is the capital of France?") print(result) ``` 此代码展示了如何初始化一个带有自定义工具的 Agent 并运行简单的提问任务[^2]。 #### RAG 模式的原理及其在 LangChain 中的应用 RAG(Retrieval-Augmented Generation)是一种增强型生成方法,其核心思想是将检索机制引入到文本生成过程中。具体来说,在生成回复之前先从大量文档数据集中提取最相关的片段作为上下文信息提供给 LLM 进行进一步加工[^3]。 LangChain 提供了完整的框架支持这种工作流的设计与开发。下面是一个典型的流程描述: 1. **索引建立**: 使用向量存储技术对原始资料进行编码形成可高效查找的数据结构; 2. **相似度匹配**: 当接收到新请求时,计算该问题与其他已知记录之间的距离得分找出最佳候选者集合; 3. **融合输出**: 将上述找到的内容传递至预训练好的大型语言模型里综合考虑后给出最终答复。 这里有一个利用 LangChain 构建本地知识库问答系统的实例演示: ```python from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter from langchain.chains import RetrievalQA from langchain.document_loaders import TextLoader from langchain.prompts import PromptTemplate from langchain.chat_models import ChatOpenAI loader = TextLoader('./data/local_knowledge.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = Chroma.from_texts([t.page_content for t in texts], embeddings, collection_name="local-knowledge") qa_prompt_template = """Use the following pieces of context to answer the question at the end. {context} Question: {question} Answer:""" prompt = PromptTemplate(template=qa_prompt_template, input_variables=["context", "question"]) model = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0) retriever_qa = RetrievalQA.from_llm(llm=model, retriever=db.as_retriever(), prompt=prompt) response = retriever_qa.run("Who invented Python programming language and when was it first released?") print(response) ``` 这段脚本说明了怎样加载文件、分割文本单元格、嵌入特征表示以及设置对话链路等步骤来达成特定目标——即针对某个领域内的封闭式问题给予精确解答。 #### 总结 综上所述,LangChain 不仅提供了灵活易扩展的基础架构让用户能够轻松搭建各种智能化服务项目,而且也内置了很多实用的功能组件方便开发者快速原型化想法验证效果。无论是需要执行复杂指令序列还是希望打造专属的知识咨询平台,都可以借助这一强大开源库的力量去探索无限可能!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值