一、RAG:检索增强生成
RAG 是 retrieval-Augmented Generation 的缩写,即检索增强生成。从字面意思理解,它主要增强搜索和检索的能力,力求 “找得更准”。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
- 案例:在智能客服领域,当用户提出问题时,RAG 可以快速从知识库中检索出相关信息,并结合生成技术给出更准确的回答。
RAG 通过专项学习具体的向量来增强结果,目前在企业知识库中应用广泛。同时,它能在一定程度上限制大模型回答问题时产生的幻觉。RAG 是一种基于 LLM 的增强优化方案,在具体场景中可解决特定问题。
二、LLM:大语言模型
LLM:Large Language Model,即大语言模型,但我们知道 RAG 是基于 LLM 的。LLM 作为语言模型基础,为 RAG 等技术提供了支撑。
- 案例:例如 OpenAI 的 GPT 系列就是一种强大的 LLM,它可以生成自然流畅的文本。
LLM 的不断发展和进步,也推动着人工智能领域的创新。
三、AI Agent:
智能体解决复杂业务AI Agent 如同一个智能体,通过 AI 的基础能力搭建而成,能解决复杂的业务问题。
关于单Agent 和多Agent
现场日常垂直场景单Agent基本已经能够解决,关于多Agent,我和豆包的同学聊过这个话题,好像在创新场景比如搭建游戏的npc或者大型项目用Agent之间协作更合适一点,多agent下,变量的不确定性会增强;
-
案例:比如在电商领域,一个智能客服 agent 可以通过与用户的交互,了解用户需求,然后调用不同的服务模块,如商品推荐、订单查询等,为用户提供全方位的服务。
它可以由工作流、prompt 工程等共同组织,确保多节点问题的解决。在复杂业务中,多个 agent 可共同协作。 -
案例:例如在 coze 上搭建的旅游规划方案智能体,能通过查询天气、日历、航班等给出旅游方案,且可调整节点输入得到不同答案。与仅用 prompt 输入相比,AI Agent 在处理复杂任务时更具优势。
四、Prompt 工程与 AI Agent 的关系
Prompt 是输入给大模型的提示词,有固定格式,可引导大模型输出方向。
- 案例:比如在图像生成领域,通过输入特定的 prompt,如 “一只可爱的小猫咪在花园里玩耍”,可以让图像生成模型生成相应的图像。
使用 prompt 还是 AI Agent 取决于任务的复杂程度。简单单节点任务可用 prompt,而复杂任务则需 AI Agent。AI Agent 能自动化解决流程范式,控制大模型结果更准确。相比之下,仅用 prompt 控制结果时,“幻觉” 影响大,结果确定性不足。AI Agent 就像综合战士,可携带各种装备对抗问题,还能复制、组合,采用团队组合战术。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓